Skip to main content

Syngas Production Using Carbon Dioxide Reforming: Fundamentals and Perspectives

  • Chapter
  • First Online:
Transformation and Utilization of Carbon Dioxide

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Syngas can be produced from a variety of different hydrocarbon molecules by the catalysed reaction with steam, carbon dioxide or oxygen (or with various combinations of these) at high temperatures. This chapter summarises some of the most significant work that has been reported for the use of CO2, with or without added steam or oxygen, in the reforming of hydrocarbons over a variety of different catalyst types, the main attention being given to reactions of methane. Although the so-called dry reforming of methane (i.e. the reaction of CH4 + CO2 alone) may have some limited applications in practice, problems such as carbon deposition on the catalysts used are likely to prevent widespread use of this process. It is therefore more likely that “mixed reforming” (i.e. CH4 + CO2 + H2O or perhaps CH4 + CO2 + O2) will be applied. This is not only because the mixed feed gives potentially more useful syngas ratios but also because its use helps prevent C deposition. Since the number of papers that have been published on the subject on the CO2 reforming of methane and higher hydrocarbons is very high, no attempt is made in this review to cover all of the literature on the subject. Instead, the review lists and, when appropriate, comments on the most significant papers related to the most promising catalyst types used for the CO2 reforming of methane. While emphasis is placed on the key literature of the last twenty years or so, some of the most recent papers on the subject are also listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    No attempt has been made to cross-check the contents of various searches that have been carried out so that the total number of papers is likely to be well in excess of 2000. More detailed Web of Science and Scopus searches have also been carried out in order to identify some of the key references on each of these subjects, and the text that follows below concentrates predominantly on these papers.

  2. 2.

    A relatively small proportion of the papers in the recent literature have recognised these further limitations, and some of these are listed in the tables below.

  3. 3.

    Unfortunately, a significant proportion of the papers in the recent literature report experiments carried out under unrealistic conditions, for example, at low temperatures or with non-stoichiometric reactant compositions; in any process that will be developed, the reaction will be carried out at high temperatures and pressures under conditions close to equilibrium, and any novel catalyst formulations must be tested under similar conditions.

  4. 4.

    Syngas could also be formed by coal gasification or by modifications of the gasification process using steam or CO2 in the feed.

  5. 5.

    We have paid some attention to this time dependence in our choice of which papers to include.

References

  1. Fish JD, Hawn DC (1987) Closed-loop thermochemical energy-transport based on CO2 reforming of methane – balancing the reaction systems. J Solar Energy Eng Trans ASME 109:215–220

    CAS  Google Scholar 

  2. Gadalla AM, Bower B (1988) The role of catalyst support on the activity of nickel for the reforming of methane with CO2. Chem Eng Sci 43:3049–3062

    CAS  Google Scholar 

  3. Gadalla AM, Somer ME (1989) Synthesis and characterization of catalysts in the system Al2O3-MgO-NiO-Ni for methane reforming with CO2. J Am Ceram Soc 72:683–687

    CAS  Google Scholar 

  4. Rostrup Nielsen JR (1984) Catalytic steam reforming. In: Anderson JR, Boudart M (eds) Catalysis – science and technology, vol 5. Springer, Berlin/Heidelberg/New York/Tokyo, pp 1–117

    Google Scholar 

  5. Ross JRH (1975) The steam reforming of hydrocarbons. In: Thomas JM, Roberts MW (eds) Surface and defect properties of solids, vol 4. The Chemical Society, London, pp 34–67

    Google Scholar 

  6. Rostrup-Nielsen JR (1994) Aspects of CO2 reforming of methane. In: Curry-Hyde HE, Howe RF (eds) Natural gas conversion, II, vol 81, Studies in surface science and catalysis. Elsevier, Amsterdam, pp 25–41

    Google Scholar 

  7. The Midrex Process (2013) http://www.midrex.com

  8. Dibbern HC, Olesen P, Rostrup Nielsen JR, Udengaard NR (1986) Make low H2/CO syngas using sulfur passivated reforming. Hydrocarb Process 65:71–74

    CAS  Google Scholar 

  9. Rostrup Nielsen JR (1984) Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J Catal 85:31–43

    CAS  Google Scholar 

  10. Ross JRH (1985) Metal catalysed methanation and steam reforming. In: Bond GC, Webb G (eds) Catalysis, vol 7, Specialist periodical report. Royal Society of Chemistry, London, pp 1–45

    Google Scholar 

  11. Keller GE, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane. 1 Determination of active catalysts. J Catal 73:9–19

    CAS  Google Scholar 

  12. Hinsen W, Baerns M (1983) Oxidative coupling of methane to C2 hydrocarbons in the presence of different catalysts. Chemiker Zeitung 107:223–226

    CAS  Google Scholar 

  13. Ito T, Wang J-X, Lin C-H, Lunsford JH (1985) Oxidative dimerization of methane over a lithium-promoted magnesium-oxide catalyst. J Am Chem Soc 107:5062–5068

    CAS  Google Scholar 

  14. Lunsford JH (1991) The catalytic conversion of methane to higher hydrocarbons. “Natural gas conversion”. Stud Surf Sci Catal 61:3–13

    CAS  Google Scholar 

  15. Hutchings GJ, Scurrell MS, Woodhouse JR (1989) Oxidative coupling of methane using oxide catalysts. Chem Soc Rev 18:251

    CAS  Google Scholar 

  16. Baerns M, Ross JRH (1992) Catalytic chemistry of methane conversion. Thomas JM, Zamaraev KI (eds) Perspectives in catalysis. Blackwell Scientific Publishers, Oxford, IUPAC monograph, pp 10–30

    Google Scholar 

  17. See also a collection of review papers in Wolf EE (eds) (1992) Methane conversion by oxidative processes – fundamental and engineering aspects. Van Nostrand Reinhold catalysis series, Van Nostrand Reinhold, New York

    Google Scholar 

  18. Holmen A, Jens K-J, Kolboe S (eds) (1990) Natural gas conversion, vol 61, Stud Surf Sci Catal. Elsevier, Amsterdam

    Google Scholar 

  19. Howe R, Curry-Hyde E (eds) (1994) Natural gas conversion III, vol 81, Stud Surf Sci Catal. Elsevier, Amsterdam

    Google Scholar 

  20. de Pontes M, Espinoza RL, Nicolaides C, Scholz JH, Scurrell MS (eds) (1997) Natural gas conversion IV, vol 107, Stud Surf Sci Catal. Elsevier, Amsterdam

    Google Scholar 

  21. Parmaliana A, Sanfilippo D, Frusteri F, Vaccari A, Arena F (eds) (1998) Natural gas conversion V, vol 119, Stud Surf Sci Catal. Elsevier, Amsterdam

    Google Scholar 

  22. Ross JRH (2005) Natural gas reforming and CO2 mitigation. Catal Today 100:151–158. O’Connor AM (1994) BSc thesis, University of Limerick

    Google Scholar 

  23. Rostrup Nielsen JR (1993) Production of synthesis gas. Catal Today 18:305–324

    Google Scholar 

  24. Edwards JH, Maitra AM (1994) The reforming of methane with carbon dioxide – current status and future applications. Stud Surf Sci Catal 81:291–296

    CAS  Google Scholar 

  25. Seshan K, Ten Barge HW, Hally W, Van Keulen ANJ, Ross JRH (1994) Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2. Stud Surf Sci Catal 81:285–290

    CAS  Google Scholar 

  26. Uchijima T, Nakamura J, Sato K, Aikawa K, Kubushiro K, Kummori K (1994) Production of synthesis gas by partial oxidation of methane and reforming of methane by carbon dioxide. Stud Surf Sci Catal 81:325–327

    CAS  Google Scholar 

  27. Cant NW, Dümpelmann R, Maitra AM (1997) A comparison of nickel and rhodium catalysts for the reforming of methane by carbon dioxide. Stud Surf Sci Catal 107:491–496

    CAS  Google Scholar 

  28. Slagtern A, Olsbye U, Blom R, Dahl IM (1997) The influence of rare earth oxides on Ni/Al2O3 catalysts during CO2 reforming of CH4. Stud Surf Sci Catal 107:497–502

    CAS  Google Scholar 

  29. Yu C-C, Lu Y, Ding X-J, Shen S-K (1997) Studies on Ni/Al2O3 Catalyst for CO2 reforming of CH4 to synthesis gas. Stud Surf Sci Catal 107:503–510

    CAS  Google Scholar 

  30. Zhang Z-L, Verykios X (1997) Performance of Ni/La2O3 catalyst in carbon dioxide reforming of methane to synthesis gas. Stud Surf Sci Catal 107:511–516

    CAS  Google Scholar 

  31. Erdöhelyi A, Fodor K, Solymosi F (1997) Reaction of CH4 with CO2 and H2O over supported Ir catalyst. Stud Surf Sci Catal 107:525–530

    Google Scholar 

  32. Van Keulen ANJ, Hegarty MES, Ross JRH, Van Oosterkamp PF (1997) The development of platinum-zirconia catalysts for the CO2 reforming of methane. Stud Surf Sci Catal 107:537–546

    Google Scholar 

  33. Kikuchi E, Chen Y (1997) Low-temperature syngas formation by CO2 reforming of methane in a hydrogen-permselective membrane reactor. Stud Surf Sci Catal 107:547–553

    CAS  Google Scholar 

  34. Ponelis AA, Van Zyl PGS (1997) CO2 reforming of methane in a membrane reactor. Stud Surf Sci Catal 107:555–560

    CAS  Google Scholar 

  35. Hallische H, Bouarab R, Cherife O, Bettahar MM (1998) Effect of metal additives on deactivation of Ni/α-Al2O3 in the CO2-reforming of methane. Stud Surf Sci Catal 119:705–710

    Google Scholar 

  36. Buarab R, Menad S, Hallische D, Cherifi O, Bettahar MM (1998) Reforming of methane with carbon dioxide over supported Ni catalysts. Stud Surf Sci Catal 119:717–722

    Google Scholar 

  37. Nichio NN, Casella ML, Ponzi EN, Ferretti OA (1998) Ni/Al2O3 catalysts for syngas obtention via reforming with O2 and/or CO2. Stud Surf Sci Catal 119:723–728

    CAS  Google Scholar 

  38. Gronchi P, Centola P, Kaddouri A, Del Rosso R (1998) Transient reactions in CO2 reforming of methane. Stud Surf Sci Catal 119:735–740

    CAS  Google Scholar 

  39. Provendier H, Petit C, Estournes C, Keinnemann A (1998) Dry reforming of methane. Interest of La-Fe-Ni solid solutions compared to LaNiO3 and LaFeO3. Stud Surf Sci Catal 119:741–746

    CAS  Google Scholar 

  40. Kroll VCH, Tjatjopoulos GJ, Mirodatos C (1998) Kinetics of methane reforming over Ni/SiO2 catalysts based on a step-wise mechanistic model. Stud Surf Sci Catal 119:753–758

    CAS  Google Scholar 

  41. Kim J-H, Suh DJ, Park T-J, Kim K-L (1998) Improved stability of nickel-alumina aerogel catalysts for carbon dioxide reforming of methane. Stud Surf Sci Catal 119:771–776

    CAS  Google Scholar 

  42. York APE, Suhartanto T, Green MLH (1998) Influence of molybdenum and tungsten dopants on nickel catalysts for dry reforming of methane with carbon dioxide to synthesis gas. Stud Surf Sci Catal 119:777–782

    CAS  Google Scholar 

  43. Suzuki S, Hayakawa T, Hamakawa S, Suzuki K, Shishido T, Takehira K (1998) Sustainable Ni catalysts prepared by SPC method for CO2 reforming of CH4. Stud Surf Sci Catal 119:783–788

    Google Scholar 

  44. Stagg SM, Resasco DE (1998) Effect of promoters on supported Pt catalysts for CO2 reforming of CH4. Stud Surf Sci Catal 119:813–818

    CAS  Google Scholar 

  45. O’Connor AM, Meunier FC, Ross JRH (1998) A kinetic and in-situ DRIFT spectroscopy study of carbon dioxide reforming over a Pt/ZrO2 catalyst. Stud Surf Sci Catal 119:819–824

    Google Scholar 

  46. Quincoces CE, Perez de Vargas S, Diaz A, Montes M, González MG (1998) Morphological changes of Ca promoted Ni/SiO2 catalysts and carbon deposition during CO2 reforming of methane. Stud Surf Sci Catal 119:837–842

    CAS  Google Scholar 

  47. Nam JW, Chae H, Lee SH, Jung H, Lee K-Y (1998) Methane dry reforming over well-dispersed Ni catalyst prepared from perovskite-type mixed oxides. Stud Surf Sci Catal 119:843–848

    CAS  Google Scholar 

  48. Tomishige K, Chen Y, Yamazaki O, Himeno Y, Koganezawa Y, Fujimoto K (1998) Carbon-free CH4-CO2 and CH4-H2O reforming catalysts – structure and mechanism. Stud Surf Sci Catal 119:861–866

    CAS  Google Scholar 

  49. Fischer F, Tropsch H (1928) Brennstoff Chem 3:39

    Google Scholar 

  50. Bodrov IM, Apel’baum LO (1967) Kinet Katal 8:379

    CAS  Google Scholar 

  51. Bodrov IM, Apel’baum LO, Temkin MI. Kinet Katal 5:696

    Google Scholar 

  52. Takayasu O, Hirose E, Matsuda N, Matsurra I (1991) Chem Expr 6:447

    CAS  Google Scholar 

  53. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226; see also Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT (1992) Catal Today 13:417

    Google Scholar 

  54. Solymosi F, Kutsan GY, Erdohelyi A (1991) Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catal Lett 11:149

    CAS  Google Scholar 

  55. Masai M, Kado H, Miyake A, Nishiyama S, Tsuruya S (1988) Stud Surf Sci Catal 36:67

    CAS  Google Scholar 

  56. Levy M, Levitan R, Rosin H, Rubin R (1993) Solar-energy storage via a closed-loop chemical heat pipe. Solar Energy 50:179–189

    CAS  Google Scholar 

  57. Worner A, Tamme R (1998) CO2 reforming of methane in a solar driven volumetric receiver-reactor. Catal Today 46:165–174

    CAS  Google Scholar 

  58. Wang SB, Lu GQM, Millar GJ (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy Fuels 10:896–904

    CAS  Google Scholar 

  59. Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345

    CAS  Google Scholar 

  60. Ross JRH, Van Keulen ANJ, Hegarty MES, Seshan K (1996) The catalytic conversion of natural gas to useful products. Catal Today 30:193–199

    CAS  Google Scholar 

  61. Ross JRH (2005) Natural gas reforming and CO2 mitigation. Catal Today 100:151–158

    CAS  Google Scholar 

  62. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev Sci Eng 41:1–42

    CAS  Google Scholar 

  63. Verykios XE (2003) Catalytic reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrogen Energy 28:1045–1063

    CAS  Google Scholar 

  64. Armor JN (1999) The multiple roles of catalysis in the production of H2. Appl Catal A Gen 176:159–176

    CAS  Google Scholar 

  65. Ma J, Sun N, Zhang X (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231

    CAS  Google Scholar 

  66. Kodama T (2003) High-temperature solar chemistry for converting solar heat to chemical fuels. Progr Energy Combust Sci 29:567–597

    CAS  Google Scholar 

  67. Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T (1996) Suppression of carbon deposition in the CO2 reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl Catal A Gen 144:111–120

    CAS  Google Scholar 

  68. Wang SB, Lu GQ (1998) Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal B Environ 19:267–277

    Google Scholar 

  69. Wang SB, Lu GQM (1998) CO2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique. Appl Catal B Environ 16:269–277

    CAS  Google Scholar 

  70. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel particles. Appl Catal A Gen 197:191–200

    CAS  Google Scholar 

  71. Martinez R, Romero E, Guimon C, Bilbao R (2004) CO2 reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum. Appl Catal A Gen 274:139–149

    CAS  Google Scholar 

  72. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ (2004) Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming. Appl Catal A Gen 264:169–174

    CAS  Google Scholar 

  73. Laosiripojana N, Sutthisripok W, Assabumrungrat S (2005) Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: influence of the doping of ceria on the resistance toward carbon formation. Chem Eng J 112:13–22

    CAS  Google Scholar 

  74. Goula MA, Lemonidou AA, Efstathiou AM (1996) Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques. J Catal 161:626–640

    CAS  Google Scholar 

  75. Osaki T, Mori T (2001) Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts. J Catal 204:89–97

    CAS  Google Scholar 

  76. Rostrup Nielsen JR, Hansen JHB (1993) CO2 reforming of methane over transition metals. J Catal 144:38–49

    CAS  Google Scholar 

  77. Tomishige K, Chen YG, Fujimoto K (1999) Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. J Catal 181:91–103. See also: Tomishige K, Yamazaki O, Chen YG, Yokoyama K, Li XH, Fujimoto K (1998) Development of ultra-stable Ni catalysts for CO2 reforming of methane. Catal Today 45:35–39

    Google Scholar 

  78. Wei JM, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383

    CAS  Google Scholar 

  79. Ruckenstein E, Hu YH (1995) Carbon dioxide reforming of methane over nickel alkaline earth metal oxide catalysts. Appl Catal A Gen 133:149–161

    CAS  Google Scholar 

  80. Ruckenstein E, Hu YH (1998) Combination of CO2 reforming and partial oxidation of methane over NiO/MgO solid solution catalysts. Ind Eng Chem Res 37:1744–1747

    CAS  Google Scholar 

  81. Djaida A, Libs S, Keinnemann A, Barama A (2006) Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catal Today 113:194–200

    Google Scholar 

  82. Guczi L, Stefler G, Geszti O, Sajo I, Paszti Z, Tompos A, Schay Z (2010) Methane dry reforming with CO2: a study on surface carbon species. Appl Catal A Gen 375:236–246

    CAS  Google Scholar 

  83. Wang H, Miller JT, Shakouri M, Xi C, Wu T, Zhao H, Cem Akatay M (2013) XANES and EXAFS studies on metal nanoparticle growth and bimetallic interaction of Ni-based catalysts for CO2 reforming of CH4. Catal Today 207:3–12. See also: Zhang J, Wang H, Dalai AK (2007) J Catal 249:298-; idem (2008) Appl Catal A Gen 339:321

    Google Scholar 

  84. Roh HS, Jun KW, Dong WS, Chang JS, Park SE, Joe YI (2002) Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane. J Mol Catal A Chem 181:137–142; see also: Li XS, Chang JS, Tian MY, Park SE (2001) CO2 reforming of methane over modified Ni/ZrO2 catalysts. Appl Organometal Chem 15:109–112; and Li X, Chang JS, Park SE (1999) Carbon as an intermediate during the carbon dioxide reforming of methane over zirconia-supported high nickel loading catalysts. Chem Lett 1099–1100

    Google Scholar 

  85. Montoya JA, Romero-Pascaul E, Gimon C, Del Angel P, Monzon A (2000) Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts. Catal Today 63:71–85

    CAS  Google Scholar 

  86. Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Design of stable catalysts for methane-carbon dioxide reforming. Stud Surf Sci Catal 101:463–472; see also: Hally W, Bitter JH, Seshan K, Lercher JA, Ross JRH (1994) Problem of coke formation on Ni/ZrO2 catalysts during the carbon dioxide reforming of methane. Stud Surf Sci Catal 88:167–173; and Ref. [28]

    Google Scholar 

  87. Nagaraja BM, Bulushev DA, Beloshapkin S, Ross JRH (2011) The effect of potassium on the activity and stability of Ni-MgO-ZrO2 catalysts for the dry reforming of methane to give synthesis gas. Catal Today 178:132–136

    CAS  Google Scholar 

  88. Bradford MCJ, Vannice MA (1996) Catalytic reforming of methane with carbon dioxide over nickel catalysts. Part 1. Catalyst characterization and activity; and Part 2. Reaction. Appl Catal A Gen 142:73–96 and 97–122

    Google Scholar 

  89. Zhang ZL, Verykios XE, MacDonald SM, Affrossman S (1996) Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J Phys Chem 100:744–754; see also Zhang Z, Verykios XE (1977) Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts. Appl Catal A Gen 138:109–133; and Verykios XE (2003) Catalytic reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrogen Energy 28:1045–1063

    Google Scholar 

  90. Swaan HM, Kroll VCH, Martin GA, Mirodatos C (1994) Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide. Catal Today 21:571–578; see also: Kroll VCH, Swaan HM, Mirodatos C (1996) Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst. 1. Deactivation studies. J Catal 161:409–422

    Google Scholar 

  91. Valderrama G, Kiennemann A, Goldwasser MR (2010) La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J Power Sources 195:1765–1771

    CAS  Google Scholar 

  92. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226; see also Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT (1992) Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidizing agent for methane conversion. Catal Today 13:417–426

    Google Scholar 

  93. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE (2000) CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J Catal 194:240–249

    CAS  Google Scholar 

  94. Damyanova S, Bueno JMC (2003) Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl Catal A Gen 253:135–150

    CAS  Google Scholar 

  95. O’Connor AM, Ross JRH (1998) The effect of O2 addition on the carbon dioxide reforming of methane over Pt/ZrO2 catalysts. Catal Today 46:203–210

    Google Scholar 

  96. Bitter JH, Seshan K, Lercher JA (1997) The state of zirconia supported Pt catalyst for CO2/CH4 reforming. J Catal 171:279–286

    CAS  Google Scholar 

  97. Nakamura J, Aikawa K, Sato K, Uchima T (1994) Role of support in reforming of CH4 with CO2 over Rh catalysts. Catal Lett 25:265–270

    CAS  Google Scholar 

  98. Richardson JT, Garrait M, Hung JK (2003) Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports. Appl Catal A Gen 255:69–82

    CAS  Google Scholar 

  99. Mark MF, Maier WF (1996) CO2 reforming of methane on supported Rh and Ir catalysts. J Catal 164:122–130

    CAS  Google Scholar 

  100. Erdohelyi A, Cserenyi J, Solymosi F (1993) Activation of CH4 and its reaction with CO2 over supported Rh catalysts. J Catal 141:287–299

    CAS  Google Scholar 

  101. Qin D, Lapszewicz J (1994) Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals. Catal Today 21:551–560

    CAS  Google Scholar 

  102. Maestri M, Vlachos DG, Beretta A, Groppi G, Tronconi E (2008) Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models. J Catal 259:211–222

    CAS  Google Scholar 

  103. Erdohelyi A, Cserenyi J, Papp E, Solymosi F (1994) Catalytic reaction of methane with carbon dioxide over supported palladium. Appl Catal A Gen 108:205–219

    Google Scholar 

  104. Donazzi A, Beretta A, Groppi G, Forzatti P (2008) Catalytic partial oxidation of methane over a 4 % Rh/alpha-alumina catalyst. Part II. Role of CO2 reforming. J Catal 255:259–268

    CAS  Google Scholar 

  105. Claridge JB, York APE, Brungs AJ, Marquez-Alvarez C, Sloan J, Tsang SC, Green MLH (1998) New catalysts for the conversion of methane to synthesis gas: molybdenum and tungsten carbide. J Catal 180:85–100 (See also reference [25])

    CAS  Google Scholar 

  106. Treacy D, Ross JRH (2004) Carbon dioxide reforming of methane over supported molybdenum carbide catalysts. In: Bao X, Xu Y (eds) Natural gas conversion VII, vol 147, Studies in surface science and catalysis. Elsevier, Amsterdam, pp 193–198

    Google Scholar 

  107. Asencios YJO, Assaf EM (2013) Combination of dry reforming and partial oxidation of methane on NiO-MgO-ZrO2 catalyst: effect of nickel content. Fuel Proc Technol 106:247–252

    CAS  Google Scholar 

  108. Zanganeh R, Rezaei M, Zamaniyan A (2013) Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts. Int J Hydrogen Energy 38:3012–3018

    CAS  Google Scholar 

  109. Zanganeh R, Rezaei M, Zamaniyan A, Bozorgzadeh HR (2013) Preparation of Ni0.1 Mg0.9O nanocrystalline powder and its catalytic performance in methane reforming with carbon dioxide. J Ind Eng Chem 19:234–239

    CAS  Google Scholar 

  110. Chen W, Zhao G, Xue Q, Chen L, Lu Y (2013) High carbon-resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 reforming. Appl Catal B Environ 136–137:260–268

    Google Scholar 

  111. Bhavani AG, Kim WY, Kim JY, Lee JS (2013) Improved activity and coke resistance by promoters of nanosized trimetallic catalysts for autothermal carbon dioxide reforming of methane. Appl Catal A Gen 450:63–72

    CAS  Google Scholar 

  112. Benrabaa R, Löfberg A, Rubbens A, Bordes-Richard E, Vannier RN, Barama A (2013) Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catal Today 203:188–195

    CAS  Google Scholar 

  113. Gardner TH, Spivey JJ, Kugler EL, Pakhare D (2013) CH4–CO2 reforming over Ni-substituted barium hexaaluminate catalysts. Appl Catal A Gen 455:129–136

    CAS  Google Scholar 

  114. Baeza BB, Pedrero CM, Soria MA, Ruiz AG, Rodemerck U, Ramos IR (2013) Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3. Appl Catal B Environ 129:450–459

    Google Scholar 

  115. Odedairo T, Chen J, Zhu Z (2013) Metal–support interface of a novel Ni–CeO2 catalyst for dry reforming of methane. Catal Commun 31:25–31

    CAS  Google Scholar 

  116. Ozkara-Aydinoglu S, Aksoylu AE (2013) A comparative study on the kinetics of carbon dioxide reforming of methane over Pt–Ni/Al2O3 catalyst: effect of Pt/Ni Ratio. Chem Eng J 215–216:542–549

    Google Scholar 

  117. Tao K, Shi L, Ma Q, Wang D, Zeng C, Kong C, Wu M, Chen L, Zhou S, Hu Y, Tsubaki N (2013) Methane reforming with carbon dioxide over mesoporous nickel–alumina composite catalyst. Chem Eng J 221:25–31

    CAS  Google Scholar 

  118. Ma Q, Wang D, Wu M, Zhao T, Yoneyama Y, Tsubaki N (2013) Effect of catalytic site position: nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming. Fuel 108:430–438

    CAS  Google Scholar 

  119. Sun Y, Collins M, French D, McEvoy S, Hart G, Stein W (2013) Investigation into the mechanism of NiMg(Ca)bAlcOx catalytic activity for production of solarised syngas from carbon dioxide reforming of methane. Fuel 105:551–558

    CAS  Google Scholar 

  120. Zhu J, Peng X, Yao L, Deng X, Dong H, Tong D, Hu C (2013) Synthesis gas production from CO2 reforming of methane over NieCe/SiO2 catalyst: the effect of calcination ambience. Int J Hydrogen Energy 38:117–126

    CAS  Google Scholar 

  121. Albarazi A, Beaunier P, Costa PD (2013) Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect of promotion by Ce0.75Zr0.25O2 mixed oxide. J Hydrogen Energy 38:127–139

    CAS  Google Scholar 

  122. San Jose-Alonso D, Illan-Gomez MJ, Roman-Martınez MC (2013) Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane. J Hydrogen Energy 38:2230–2239

    CAS  Google Scholar 

  123. Nagaraja BM, Bulushev DA, Belshapkin S, Chansai S, Ross JRH (2013) Potassium-doped Ni–MgO–ZrO2 catalysts for dry reforming of methane to synthesis gas. Topics Catal 56:1686–1694; see also Ref. [87]

    Google Scholar 

Download references

Acknowledgement

The author wishes to thank Bhari Mallanna Nagaraja for having contributed some of the references included in this review and for having read and commented on the concept manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian R. H. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ross, J.R.H. (2014). Syngas Production Using Carbon Dioxide Reforming: Fundamentals and Perspectives. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_6

Download citation

Publish with us

Policies and ethics