Skip to main content

Multiphase Catalytic Reactions in/Under Dense-Phase Carbon Dioxide: Utilization of Carbon Dioxide as a Reaction Promoter

  • Chapter
  • First Online:
Book cover Transformation and Utilization of Carbon Dioxide

Abstract

This chapter describes the functions of CO2 as a reaction promoter in multiphase catalytic reactions. Carbon dioxide can play more significant chemical roles in organic synthetic reactions than expected from its rather inert nature. Under pressurized conditions, a certain amount of CO2 is dissolved in organic liquid phase (substrate, solvent), has direct interactions with substrates and/or reaction intermediates, and changes their reactivity. As a result, CO2 may improve the rate of reaction and modify the product selectivity in the liquid-phase reactions. Several examples of those organic synthetic reactions in which CO2 acts as a modifier in different manners are presented. Useful utilization of CO2 in chemical reactions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jessop PG, Subramaniam B (2007) Gas-expanded liquids. Chem Rev 107:2666–2694

    Article  CAS  Google Scholar 

  2. Akien GR, Poliakoff M (2009) A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem 11:1083–1100

    Article  CAS  Google Scholar 

  3. Arai M, Fujita S, Shirai M (2009) Multiphase catalytic reactions in/under dense phase CO2. J Supercrit Fluids 47:351–356

    Article  CAS  Google Scholar 

  4. Akiyama Y, Fujita S, Senboku H, Rayner CM, Brough SA, Arai M (2008) An in situ high pressure FTIR study on molecular interactions of ketones, esters, and amides with dense phase carbon dioxide. J Supercrit Fluids 46:197–205

    Article  CAS  Google Scholar 

  5. Yoo JS, Jhung SH, Lee KH, Park YS (2002) An advanced MC-type oxidation process – the role of carbon dioxide. Appl Catal A Gen 223:239–251

    Article  CAS  Google Scholar 

  6. Aresta M, Tommasi I, Quaranta E, Fragale C, Mascetti J, Tranquille M, Galan F, Fouassier M (1996) Mechanism of formation of peroxocarbonates RhOOC(O)O(Cl)(P)3 and their reactivity as oxygen transfer agents mimicking monooxygenases. The first evidence of CO2 insertion into the O-O Bond of Rh(η2-O2) complexes. Inorg Chem 35:4254–4260

    Article  CAS  Google Scholar 

  7. Nolen SA, Lu J, Brown JS, Pollet P, Eason BC, Griffith KN, Gläser R, Bush D, Lamb DR, Liotta CL, Eckert CA (2002) Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy acids. Ind Eng Chem Res 41:316–323

    Article  CAS  Google Scholar 

  8. Rajagopalan B, Wei M, Musie GT, Subramaniam B, Busch DH (2003) Homogeneous catalytic epoxidation of organic substrates in CO2-expanded solvents in the presence of water-soluble oxidants and catalysts. Ind Eng Chem Res 42:6505–6510

    Article  CAS  Google Scholar 

  9. Rathke JW, Klingler RJ, Krause TR (1991) Propylene hydroformylation in supercritical carbon dioxide. Organometallics 10:1350–1355

    Article  CAS  Google Scholar 

  10. Hemminger O, Marteel A, Mason MR, Davies JA, Tadd AR, Abraham MA (2002) Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chem 4:507–512

    Article  CAS  Google Scholar 

  11. Jin H, Subramaniam B (2004) Homogeneous catalytic hydroformylation of 1-octene in CO2-expanded solvent media. Chem Eng Sci 59:4887–4893

    Article  CAS  Google Scholar 

  12. Tominaga K, Sasaki Y (2004) Ruthenium-catalyzed one-pot hydroformylation of alkenes using carbon dioxide as a reactant. J Mol Catal A Chem 220:159–165

    Article  CAS  Google Scholar 

  13. Tominaga K (2006) An environmentally friendly hydroformylation using carbon dioxide as a reactant catalyzed by immobilized Ru-complex in ionic liquids. Catal Today 115:70–72

    Article  CAS  Google Scholar 

  14. Fujita S, Okamura S, Akiyama Y, Arai M (2007) Hydroformylation of cyclohexene with carbon dioxide and hydrogen using ruthenium carbonyl catalyst: influence of pressures of gaseous components. Int J Mol Sci 8:749–759

    Article  CAS  Google Scholar 

  15. Weissermal K, Arpe HJ (1997) Industrial organic chemistry, 3rd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. Smith GV, Notheisz F (1995) Heterogeneous catalysis in organic chemistry. Academic, London

    Google Scholar 

  17. Seki T, Grunwaldt JD, Baiker A (2008) Heterogeneous catalytic hydrogenation in supercritical fluids: potential and limitations. Ind Eng Chem Res 47:4561–4585

    Article  CAS  Google Scholar 

  18. Solinas M, Pfaltz A, Cozzi PG, Leitner W (2004) Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc 126:16142–16147

    Article  CAS  Google Scholar 

  19. Devetta L, Giovanzana A, Canu P, Bertucco A, Minder BJ (1999) Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2. Catal Today 48:337–345

    Article  CAS  Google Scholar 

  20. Chouchi D, Gourgouillon D, Courel M, Vital J, da Ponte MN (2001) The influence of phase behavior on reactions at supercritical conditions: the hydrogenation of α-pinene. Ind Eng Chem Res 40:2551–2554

    Article  CAS  Google Scholar 

  21. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev Sci Eng 40:81–126

    Article  CAS  Google Scholar 

  22. Bhanage BM, Ikushima Y, Shirai M, Arai M (1999) The selective formation of unsaturated alcohols by hydrogenation of α, β-unsaturated aldehydes in supercritical carbon dioxide using unpromoted Pt/Al2O3 catalyst. Catal Lett 62:175–177

    Article  CAS  Google Scholar 

  23. Zhao F, Fujita S, Akihara S, Arai M (2005) Hydrogenation of benzaldehyde and cinnamaldehyde in compressed CO2 medium with a Pt/C catalyst: a study on molecular interactions and pressure effects. J Phys Chem A 109:4419–4424

    Article  CAS  Google Scholar 

  24. Zhao F, Fujita S, Sun J, Ikushima Y, Arai M (2004) Carbon dioxide-expanded liquid substrate phase: an effective medium for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chem Commun 40:2–4

    Google Scholar 

  25. Wang J, Wang M, Hao J, Fujita S, Arai M, Wu Z, Zhao F (2010) Theoretical study on interaction between CO2 and carbonyl compounds: influence of CO2 on infrared spectroscopy and activity of CO. J Supercrit Fluids 54:9–15

    Article  Google Scholar 

  26. Fujita S, Akihara S, Zhao F, Liu R, Hasegawa M, Arai M (2005) Selective hydrogenation of cinnamaldehyde using ruthenium-phosphine complex catalysts with multiphase reaction systems in and under pressurized carbon dioxide: significance of pressurization and interfaces for the control of selectivity. J Catal 236:101–111

    Article  CAS  Google Scholar 

  27. Liu R, Zhao F, Fujita S, Arai M (2007) Selective hydrogenation of citral with transition metal complexes in supercritical carbon dioxide. Appl Catal A Gen 316:127–133

    Article  CAS  Google Scholar 

  28. Bhanage BM, Ikushima Y, Shirai M, Arai M (1999) Multiphase catalysis using water-soluble metal complexes in supercritical carbon dioxide. Chem Commun 35:1277–1278

    Article  Google Scholar 

  29. Rappoprt Z (ed) (2007) The chemistry of anilines. Wiley, Chichester

    Google Scholar 

  30. Diao S, Qjan W, Luo G, Wei F, Wang Y (2005) Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor. Appl Catal A Gen 286:30–35

    Article  CAS  Google Scholar 

  31. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York

    Google Scholar 

  32. Li H, Zhao Q, Wan Y, Dai W, Qiao M (2006) Self-assembly of mesoporous Ni-B amorphous alloy catalysts. J Catal 244:251–254

    Article  CAS  Google Scholar 

  33. Xu R, Xie T, Zhao Y, Li Y (2007) Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology 18:055602–055606

    Article  Google Scholar 

  34. Höller V, Wegricht D, Yuranov I, Kiwi-Minsker L, Renken A (2000) Three-phase nitrobenzene hydrogenation over supported glass fiber catalysts: reaction kinetic study. Chem Eng Technol 23:251–255

    Article  Google Scholar 

  35. Meng X, Cheng H, Akiyama Y, Hao Y, Qiao W, Yu Y, Zhao F, Fujita S, Arai M (2009) Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: significance of molecular interactions. J Catal 264:1–10

    Article  CAS  Google Scholar 

  36. Meng X, Cheng H, Fujita S, Hao Y, Shang Y, Yu Y, Cai S, Zhao F, Arai M (2010) Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: significance of molecular interactions. J Catal 269:131–139

    Article  CAS  Google Scholar 

  37. Zhao F, Ikushima Y, Arai M (2004) Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size. J Catal 224:479–483

    Article  CAS  Google Scholar 

  38. Zhao F, Zhang R, Chatterjee M, Ikushima Y, Arai M (2004) Hydrogenation of nitrobenzene with supported transition metal catalysts in supercritical carbon dioxide. Adv Synth Catal 346:661–668

    Article  CAS  Google Scholar 

  39. Meng X, Cheng H, Fujita S, Yu Y, Zhao F, Arai M (2011) An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines. Green Chem 13:570–572

    Article  CAS  Google Scholar 

  40. Lin HW, Yen CH, Tan CS (2012) Aromatic hydrogenation of benzyl alcohol and its derivatives using compressed CO2/water as the solvent. Green Chem 14:682–687

    Article  CAS  Google Scholar 

  41. Chanda A, Fokin VV (2009) Organic synthesis on water. Chem Rev 109:725–748

    Article  CAS  Google Scholar 

  42. Yoshida H, Wang Y, Narisawa S, Fujita S, Arai M (2013) A multiphase reaction medium including pressurized carbon dioxide and water for selective hydrogenation of benzonitrile with a Pd/Al2O3 catalysts. Appl Catal A Gen 456:215–222

    Article  CAS  Google Scholar 

  43. George M, Weiss RG (2002) Chemically reversible organogels via latent gelators. Aliphatic amines with carbon dioxide and their ammonium carbamates. Langmuir 18:7124–7135

    Article  CAS  Google Scholar 

  44. Xie X, Liotta CL, Eckert CA (2004) CO2-protected amine formation from nitrile and imine hydrogenation in gas-expanded liquids. Ind Eng Chem Res 43:7907–7911

    Article  CAS  Google Scholar 

  45. Fürstner A, Koch D, Langemann K, Leitner W, Six C (1997) Olefin metathesis in compressed carbon dioxide. Angew Chem Int Ed 36:2466–2469

    Article  Google Scholar 

  46. Wittmann K, Wisniewski W, Mynott R, Leitner W, Kranemann CL, Rische T, Eilbracht P, Kluwer S, Ernsting JM, Elsevier CJ (2001) Supercritical carbon dioxide as solvent and temporary protecting group for rhodium-catalyzed hydroaminomethylation. Chem Eur J 7:4584–4589

    Article  CAS  Google Scholar 

  47. Wei HH, Yen CH, Lin HW, Tang CS (2013) Synthesis of bimetallic Pd-Ag colloids in CO2-expanded hexane and their application in partial hydrogenation of phenylacetylene. J Supercrit Fluids 81:1–6

    Article  CAS  Google Scholar 

  48. Yoshida H, Kato K, Wang J, Meng X, Narisawa S, Fujita S, Wu Z, Zhao F, Arai M (2011) Hydrogenation of nitrostyrene with a Pt/TiO2 catalyst in CO2-dissolved expanded polar and nonpolar organic liquids: their macroscopic and microscopic features. J Phys Chem C 115:2257–2267

    Article  CAS  Google Scholar 

  49. Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  50. Minder B, Mallat T, Pickel KH, Steiner K, Baiker A (1995) Enantioselective hydrogenation of ethyl pyruvate in supercritical fluids. Catal Lett 34:1–9

    Article  CAS  Google Scholar 

  51. Ferri D, Bürgi T, Baiker A (2002) Probing boundary sites on a Pt/Al2O3 model catalyst by CO2 hydrogenation and in situ ATR-IR spectroscopy of catalytic solid–liquid interfaces. Phys Chem Chem Phys 4:2667–2672

    Article  CAS  Google Scholar 

  52. Burgener M, Ferri D, Grunwaldt JD, Mallat T, Baiker A (2005) Supercritical carbon dioxide: an inert solvent for catalytic hydrogenation? J Phys Chem B 109:16794–16800

    Article  CAS  Google Scholar 

  53. Arunajatesana V, Subramaniama B, Hutchensonc KW, Herkes FE (2007) In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chem Eng Sci 62:5062–5069

    Article  Google Scholar 

  54. Zeinalipour-Yazdi CD, Cooksy AL, Efstathiou AM (2007) A diffuse reflectance infrared Fourier-transform spectra and density functional theory study of CO adsorption on Rh/γ-Al2O3. J Phys Chem C 111:13872–13878

    Article  CAS  Google Scholar 

  55. Dong LB, McVicker GB, Kiserow DJ, Roberts GW (2010) Hydrogenation of polystyrene in CO2-expanded liquids: the effect of catalyst composition on deactivation. Appl Catal A Gen 384:45–50

    Article  CAS  Google Scholar 

  56. Yoshida H, Narisawa S, Fujita S, Liu R, Arai M (2012) In situ FTIR study on the formation and adsorption of CO on alumina-supported noble metal catalysts from H2 and CO2 in the presence of water vapor at high pressures. Phys Chem Chem Phys 14:4724–4733

    Article  CAS  Google Scholar 

  57. Arai M, Nishiyama Y, Ikushima Y (1998) Optical absorption of fine gold particles in supercritical carbon dioxide for the characterization of solvent properties. J Supercrit Fluids 13:149–153

    Article  CAS  Google Scholar 

  58. Liu R, Yoshida H, Narisawa S, Fujita S, Arai M (2012) The dispersion of TiO2 modified by the accumulation of CO2 molecules in water: an effective medium for photocatalytic H2 production. RSC Adv 2:8002–8006

    Article  CAS  Google Scholar 

  59. West KN, Wheeler C, McCarney JP, Griffith KN, Bush D, Liotta CL, Eckert CA (2001) In situ formation of alkylcarbonic acids with CO2. J Phys Chem A 105:3947–3948

    Article  CAS  Google Scholar 

  60. Xie X, Liotta CL, Eckert CA (2004) CO2-catalyzed acetal formation in CO2-expanded methanol and ethylene glycol. Ind Eng Chem Res 43:2605–2609

    Article  CAS  Google Scholar 

  61. Chamblee TS, Weikel RR, Nolen SA, Liotta CL, Eckert CA (2004) Reversible in situ acid formation for β-pinene hydrolysis using CO2 expanded liquid and hot water. Green Chem 6:382–386

    Article  CAS  Google Scholar 

  62. Weikel RR, Hallett JP, Liotta CL, Eckert CA (2006) Self-neutralizing in situ acid catalysts from CO2. Top Catal 37:75–80

    Article  CAS  Google Scholar 

  63. Weikel RR, Hallett JP, Liotta CL, Eckert CA (2007) Self-neutralizing in situ acid catalysis for single-pot synthesis of iodobenzene and methyl yellow in CO2-expanded methanol. Ind Eng Chem Res 46:5252–5257

    Article  CAS  Google Scholar 

  64. Morita DK, Pesiri DR, David SA, Glaze WH, Tumas W (1998) Palladium-catalyzed carbon-carbon bond formation in supercritical carbon dioxide. Chem Commun 1397–1398

    Google Scholar 

  65. Fujita S, Yuzawa K, Bhanage BM, Ikushima Y, Arai M (2002) Palladium-catalyzed Heck coupling reactions using different fluorinated phosphine ligands in compressed carbon dioxide and conventional organic solvents. J Mol Cat A Chem 180:35–42

    Article  CAS  Google Scholar 

  66. Bhanage BM, Fujita S, Arai M (2003) Heck reactions with various types of palladium complex catalyst: application of multiphase catalysis and supercritical carbon dioxide. J Organomet Chem 687:211–218

    Article  CAS  Google Scholar 

  67. Fujita S, Tanaka T, Akiyama Y, Asai K, Hao J, Zhao F, Arai M (2008) Impact of carbon dioxide pressurization on liquid phase organic reactions: a case study on Heck and Diels-Alder reactions. Adv Synth Catal 350:1615–1625

    Article  CAS  Google Scholar 

  68. Weinstein RD, Renslo AR, Danheiser RL, Tester JW (1999) Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions. J Phys Chem B 103:2878–2887

    Article  CAS  Google Scholar 

  69. Ikushima Y, Saito N, Arai M (1992) Supercritical carbon dioxide as reaction medium: examination of its solvent effects in the near-critical region. J Phys Chem 96:2293–2297

    Article  CAS  Google Scholar 

  70. Ford JW, Lu J, Liotta CL, Eckert CA (2008) Solvent effects on the kinetics of a Diels-Alder reaction in gas-expanded liquids. Ind Eng Chem Res 47:632–637

    Article  CAS  Google Scholar 

  71. Moral D, Osuna AMB, Córdoba A, Moretó JM, Veciana J, Ricart S, Ventosa N (2009) Versatile chemoselectivity in Ni-catalyzed multiple bond carbonylations and cyclocarbonylations in CO2-expanded liquids. Chem Commun 31:4723–4725

    Article  Google Scholar 

  72. Ford JW, Janakat ME, Lu J, Liotta CL, Eckert CA (2008) Local polarity in CO2-expanded acetonitrile: a nucleophilic substitution reaction and solvatochromic probes. J Org Chem 73:3364–3368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshida, H., Fujita, Si., Arai, M., Bhanage, B.M. (2014). Multiphase Catalytic Reactions in/Under Dense-Phase Carbon Dioxide: Utilization of Carbon Dioxide as a Reaction Promoter. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_14

Download citation

Publish with us

Policies and ethics