Skip to main content

Homogeneous Catalysis Promoted by Carbon Dioxide

  • Chapter
  • First Online:
Transformation and Utilization of Carbon Dioxide

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 2772 Accesses

Abstract

Supercritical CO2 (scCO2), which is recognized as CO2 heated and pressurized beyond its critical point (T c = 31.06 °C, P c = 7.38 MPa), is considered to be a suitable candidate for the replacement of conventional organic solvents, owing to its unique physical properties, such as abundantly available and cheap, nontoxic and environmentally benign, nonflammable and nonreactive even under oxidative conditions, high gaseous miscibility, effective mass transfer, easily tunable properties with subtle variation of pressure or temperature, weakening of the solvent interactions around the reacting species, and easy separation and recycling. In particular, smart use of dense CO2 would pronouncedly enhance the selectivity of target products and improve catalytic efficiency and lifetime of the catalyst. In this chapter, utilization of scCO2 as innovative and environmentally friendly reaction medium for chemical syntheses and especially for the metal-catalyzed reactions, including hydrogenation (asymmetric hydrogenation, hydrogenation, and hydroboration of styrene), carbonylation (hydroformylation, hydroesterification), C–C forming reaction (Diels–Alder cycloaddition, coupling reaction, olefin metathesis, Aldol reaction, miscellaneous reactions), oxidation reaction (oxidation reaction of alcohols, aldehydes, hydrocarbon and olefins, Baeyer–Villiger reaction), and polymerization (free radical polymerization, cationic polymerization, metal-catalyzed polymerization) is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  Google Scholar 

  2. Lindström UM (2002) Stereoselective organic reactions in water. Chem Rev 102(8):2751–2772

    Article  Google Scholar 

  3. Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2(11):4547–4592

    Article  CAS  Google Scholar 

  4. Jessop PG, Ikariya T, Noyori R (1995) Homogeneous catalysis in supercritical fluids. Science 269(5227):1065–1069

    Article  CAS  Google Scholar 

  5. Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99(2):475–494

    Article  CAS  Google Scholar 

  6. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28(2–3):121–191

    Article  CAS  Google Scholar 

  7. Jessop PG (2006) Homogeneous catalysis using supercritical fluids: recent trends and systems studied. J Supercrit Fluids 38(2):211–231

    Article  CAS  Google Scholar 

  8. Page SH, Goates SR, Lee ML (1991) Methanol/CO2 phase behavior in supercritical fluid chromatography and extraction. J Supercrit Fluids 4(2):109–117

    Article  CAS  Google Scholar 

  9. Woods HM, Silva MMCG, Nouvel C et al (2004) Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. J Mater Chem 14(11):1663–1678

    Article  CAS  Google Scholar 

  10. Seki T, Baiker A (2009) Catalytic oxidations in dense carbon dioxide. Chem Rev 109(6):2409–2454

    Article  CAS  Google Scholar 

  11. Darr JA, Poliakoff M (1999) New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev 99(2):495–542

    Article  CAS  Google Scholar 

  12. Beckman EJ (2003) Green chemical processing using CO2. Ind Eng Chem Res 42(8):1598–1602

    Article  CAS  Google Scholar 

  13. Lyubimov SE, Tyutyunov AA, Kalinin VN et al (2007) Carboranylphosphites—new effective ligands for rhodium-catalyzed asymmetric hydrogenation of dimethyl itaconate. Tetrahedron Lett 48(46):8217–8219

    Article  CAS  Google Scholar 

  14. Lyubimov SE, Said-Galiev EE, Khokhlov AR et al (2008) The use of monodentate phosphites and phosphoramidites as effective ligands for Rh-catalyzed asymmetric hydrogenation in supercritical carbon dioxide. J Supercrit Fluids 45(1):70–73

    Article  CAS  Google Scholar 

  15. Lyubimov SE, Davankov VA, Said-Galiev EE et al (2008) Chiral phosphoramidites as inexpensive and efficient ligands for Rh-catalyzed asymmetric olefin-hydrogenation in supercritical carbon dioxide. Catal Commun 9(9):1851–1852

    Article  CAS  Google Scholar 

  16. Lyubimov SE, Kuchurov IV, Davankov VA et al (2009) Synthesis of chiral amino acid derivatives in supercritical carbon dioxide using Rh-PipPhos catalyst. J Supercrit Fluids 50(2):118–120

    Article  CAS  Google Scholar 

  17. Lyubimov SE, Kuchurov IV, Tyutyunov AA et al (2010) The use of new carboranylphosphite ligands in the asymmetric Rh-catalyzed hydrogenation. Catal Commun 11(5):419–421

    Article  CAS  Google Scholar 

  18. Jessop PG, Hsiao Y, Ikariya T et al (1994) Catalytic production of dimethylformamide from supercritical carbon dioxide. J Am Chem Soc 116(19):8851–8852

    Article  CAS  Google Scholar 

  19. Munshi P, Heldebrant DJ, McKoon EP et al (2003) Formanilide and carbanilide from aniline and carbon dioxide. Tetrahedron Lett 44(13):2725–2727

    Article  CAS  Google Scholar 

  20. Krocher O, Koppel RA, Baiker A (1997) Highly active ruthenium complexes with bidentate phosphine ligands for the solvent-free catalytic synthesis of N,N-dimethylformamide and methyl formate. Chem Commun 1997, (5):453–454

    Google Scholar 

  21. Ting SST, Tomasko DL, Foster NR et al (1993) Solubility of naproxen in supercritical carbon dioxide with and without cosolvents. Ind Eng Chem Res 32(7):1471–1481

    Article  CAS  Google Scholar 

  22. Xiao J, Nefkens SCA, Jessop PG et al (1996) Asymmetric hydrogenation of α, β-unsaturated carboxylic acids in supercritical carbon dioxide. Tetrahedron Lett 37(16):2813–2816

    Article  CAS  Google Scholar 

  23. Berthod M, Mignani G, Lemaire M (2004) New perfluoroalkylated BINAP usable as a ligand in homogeneous and supercritical carbon dioxide asymmetric hydrogenation. Tetrahedron Asymmetry 15(7):1121–1126

    Article  CAS  Google Scholar 

  24. Johansson A (1995) Methods for the asymmetric preparation of amines. Contemp Org Synth 2(6):393–407

    Article  CAS  Google Scholar 

  25. Kainz S, Brinkmann A, Leitner W et al (1999) Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide. J Am Chem Soc 121(27):6421–6429

    Article  CAS  Google Scholar 

  26. Lyubimov SE, Rastorguev EA, Petrovskii PV et al (2011) Iridium-catalyzed asymmetric hydrogenation of imines in supercritical carbon dioxide using phosphite-type ligands. Tetrahedron Lett 52(12):1395–1397

    Article  CAS  Google Scholar 

  27. Wang S, Kienzle F (2000) The syntheses of pharmaceutical intermediates in supercritical fluids. Ind Eng Chem Res 39(12):4487–4490

    Article  CAS  Google Scholar 

  28. Turova OV, Kuchurov IV, Starodubtseva EV et al (2012) Ru–BINAP-catalyzed asymmetric hydrogenation of keto esters in high pressure carbon dioxide. Mendeleev Commun 22(4):184–186

    Article  CAS  Google Scholar 

  29. Kainz S, Koch D, Leitner W et al (1997) Perfluoroalkyl-substituted arylphosphanes as ligands for homogenous catalysis in supercritical carbon dioxide. Angew Chem Int Ed 36(15):1628–1630

    Article  CAS  Google Scholar 

  30. Guzel B, Omary MA, Fackler JP Jr et al (2001) Synthesis and characterization of {[(COD)Rh(bis-(2R,3R)-2,5-diethylphospholanobenzene)]+BARF−} for use in homogeneous catalysis in supercritical carbon dioxide. Inorg Chim Acta 325(1–2):45–50

    Article  CAS  Google Scholar 

  31. Horishi Nishida NT, Yoshimura M, Sonoda T, Kobyrashi H (1984) Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Highly lipophilic stable anionic agent for solvent-extraction of cations. Bull Chem Soc Jpn 57(9):2600–2604

    Article  Google Scholar 

  32. Altinel H, Avsar G, Guzel B (2009) Fluorinated rhodium-phosphine complexes as efficient homogeneous catalysts for the hydrogenation of styrene in supercritical carbon dioxide. Transit Metal Chem 34(3):331–335

    Article  CAS  Google Scholar 

  33. Burkhardt ER, Matos K (2006) Boron reagents in process chemistry: excellent tools for selective reductions. Chem Rev 106(7):2617–2650

    Article  CAS  Google Scholar 

  34. Zhu Y, Jang SHA, Tham YH et al (2011) An efficient and recyclable catalytic system comprising nano-Iridium(0) and a pyridinium salt of nido-carboranyldiphosphine for the synthesis of one-dimensional boronate esters via hydroboration reaction. Organometallics 31(7):2589–2596

    Article  Google Scholar 

  35. Carter CAG, Baker RT, Tumas W et al (2000) Enhanced regioselectivity of rhodium-catalysed alkene hydroboration in supercritical carbon dioxide. Chem Commun 2000, (5):347–348

    Google Scholar 

  36. Bhattacharyya P, Gudmunsen D, Hope EG et al (1997) Phosphorus(III) ligands with fluorous ponytails. J Chem Soc Perkin Trans 1(24):3609–3612

    Article  Google Scholar 

  37. Rathke JW, Klingler RJ, Krause TR (1991) Propylene hydroformylation in supercritical carbon dioxide. Organometallics 10(5):1350–1355

    Article  CAS  Google Scholar 

  38. Guo Y, Akgerman A (1997) Hydroformylation of propylene in supercritical carbon dioxide. Ind Eng Chem Res 36(11):4581–4585

    Article  CAS  Google Scholar 

  39. Jessop PG, Ikariya T, Noyori R (1995) Selectivity for hydrogenation or hydroformylation of olefins by hydridopentacarbonylmanganese(I) in supercritical carbon dioxide. Organometallics 14(3):1510–1513

    Article  CAS  Google Scholar 

  40. Bach I (1998) Hydroformylation of hex-1-ene in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes. Chem Commun 1998, (14):1463–1464

    Google Scholar 

  41. Sellin MF, Cole-Hamilton DJ (2000) Hydroformylation reactions in supercritical carbon dioxide using insoluble metal complexes. J Chem Soc Dalton Trans (11):1681–1683

    Google Scholar 

  42. Palo DR, Erkey C (1998) Homogeneous catalytic hydroformylation of 1-octene in supercritical carbon dioxide using a novel Rhodium catalyst with fluorinated arylphosphine ligands. Ind Eng Chem Res 37(10):4203–4206

    Article  CAS  Google Scholar 

  43. Patcas F, Maniut C, Ionescu C et al (2007) Supercritical carbon dioxide as an alternative reaction medium for hydroformylation with integrated catalyst recycling. Appl Catal B Environ 70(1–4):630–636

    Article  CAS  Google Scholar 

  44. Van Rooy A, de Bruijn JNH, Roobeek KF et al (1996) Rhodium-catalysed hydroformylation of branched 1-alkenes; bulky phosphite vs. triphenylphosphine as modifying ligand. J Organomet Chem 507(1–2):69–73

    Article  Google Scholar 

  45. Estorach CT, Orejón A, Masdeu-Bultó AM (2008) New rhodium catalytic systems with trifluoromethyl phosphite derivatives for the hydroformylation of 1-octene in supercritical carbon dioxide. Green Chem 10(5):545

    Article  CAS  Google Scholar 

  46. Koeken ACJ, Benes NE, van den Broeke LJP et al (2009) Efficient hydroformylation in dense carbon dioxide using phosphorus ligands without perfluoroalkyl substituents. Adv Synth Catal 351(9):1442–1450

    Article  CAS  Google Scholar 

  47. Francio G, Leitner W (1999) Highly regio- and enantio-selective rhodium-catalysed asymmetric hydroformylation without organic solvents. Chem Commun 1999, (17):1663–1664

    Google Scholar 

  48. Franciò G, Wittmann K, Leitner W (2001) Highly efficient enantioselective catalysis in supercritical carbon dioxide using the perfluoroalkyl-substituted ligand (R, S)-3–H2F6-BINAPHOS. J Organomet Chem 621(1–2):130–142

    Article  Google Scholar 

  49. Kainz S, Leitner W (1998) Catalytic asymmetric hydroformylation in the presence of compressed carbon dioxide. Catal Lett 55(3–4):223–225

    Article  CAS  Google Scholar 

  50. Hu Y, Chen W, Osuna AMB et al (2001) Rapid hydroformylation of alkyl acrylates in supercritical CO. Chem Commun 2001, (8):725–726

    Google Scholar 

  51. Hu Y, Chen W, Osuna AMB et al (2002) Fast and unprecedented chemoselective hydroformylation of acrylates with a fluoropolymer ligand in supercritical CO2. Chem Commun 2(7):788–789

    Article  Google Scholar 

  52. Estorach CT, Masdeu-Bultó AM (2007) Hydroesterification of 1-alkenes in Supercritical Carbon dioxide. Catal Lett 122(1–2):76–79

    Google Scholar 

  53. Paulaitis ME, Alexander GC (1987) A case study of the thermodynamic solvent effects on a Diels-Alder reaction in supercritical carbon dioxide. Reactions in supercritical fluids. Pure Appl Chem 59:61–68

    Article  CAS  Google Scholar 

  54. Ikushima Y, Saito N, Arai M (1991) High-pressure Fourier transform infrared spectroscopy study of the Diels-Alder reaction of isoprene and maleic anhydride in supercritical carbon dioxide. Bull Chem Soc Jpn 64(1):282–284

    Article  CAS  Google Scholar 

  55. Renslo AR, Weinstein RD, Tester JW et al (1997) Concerning the regiochemical course of the Diels–Alder reaction in supercritical carbon dioxide. J Org Chem 62(13):4530–4533

    Article  CAS  Google Scholar 

  56. Scott Oakes R, J. Heppenstall T, Shezad N et al (1999) Use of scandium tris(trifluoromethanesulfonate) as a Lewis acid catalyst in supercritical carbon dioxide: efficient Diels-Alder reactions and pressure dependent enhancement of endo:exo stereoselectivity. Chem Commun 1999, (16):1459–1460

    Google Scholar 

  57. Matsuo J-I, Tsuchiya T, Odashima K et al (2000) Lewis acid catalysis in supercritical carbon dioxide. Use of Scandium tris(heptadecafluorooctanesulfonate) as a Lewis acid catalyst in Diels-Alder and aza Diels-Alder reactions. Chem Lett 29(2):178–179

    Article  Google Scholar 

  58. Carroll MA, Holmes AB (1998) Palladium-catalysed carbon–carbon bond formation in supercritical carbon dioxide. Chem Commun 1998, (13):1395–1396

    Google Scholar 

  59. Morita DK, David SA, Tumas W et al (1998) Palladium-catalyzed cross-coupling reactions in supercritical carbon dioxide. Chem Commun 1998, (13):1397–1398

    Google Scholar 

  60. Shezad N, Oakes RS, Clifford AA et al (1999) Use of fluorinated palladium sources for efficient Pd-catalysed coupling reactions in supercritical carbon dioxide. Tetrahedron Lett 40(11):2221–2224

    Article  CAS  Google Scholar 

  61. Early TR, Gordon RS, Carroll MA et al (2001) Palladium-catalysed cross-coupling reactions in supercritical carbon dioxide. Chem Commun 1(19):1966–1967

    Article  Google Scholar 

  62. Kuchurov IV, Vasil’ev AA, Zlotin SG (2010) The Suzuki–Miyaura cross-coupling of bromo- and chloroarenes with arylboronic acids in supercritical carbon dioxide. Mendeleev Commun 20(3):140–142

    Article  CAS  Google Scholar 

  63. Fernandes RR, Lasri J, da Silva MFCG et al (2011) Oxadiazoline and ketoimine Palladium(II) complexes as highly efficient catalysts for Suzuki–Miyaura cross-coupling reactions in supercritical carbon dioxide. Adv Synth Catal 353(7):1153–1160

    Article  CAS  Google Scholar 

  64. Grubbs RH, Miller SJ, Fu GC (1995) Ring-closing metathesis and related processes in organic synthesis. Acc Chem Res 28(11):446–452

    Article  CAS  Google Scholar 

  65. Schrock RR, Murdzek JS, Bazan GC et al (1990) Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins. J Am Chem Soc 112(10):3875–3886

    Article  CAS  Google Scholar 

  66. Fürstner A, Koch D, Langemann K et al (1997) Olefin metathesis in compressed carbon dioxide. Angew Chem Int Ed 36(22):2466–2469

    Article  Google Scholar 

  67. Theruvathu JA, Aravindakumar CT, Flyunt R et al (2001) Fenton chemistry of 1,3-dimethyluracil. J Am Chem Soc 123(37):9007–9014

    Article  CAS  Google Scholar 

  68. Mikami K, Matsukawa S, Kayaki Y et al (2000) Asymmetric Mukaiyama aldol reaction of a ketene silyl acetal of thioester catalyzed by a binaphthol–titanium complex in supercritical fluoroform. Tetrahedron Lett 41(12):1931–1934

    Article  CAS  Google Scholar 

  69. Komoto I, Kobayashi S (2001) Lewis acid catalysis in a supercritical carbon dioxide (scCO2)-poly(ethylene glycol) derivatives (PEGs) system: remarkable effect of PEGS as additives on reactivity of Ln(OTf)-catalyzed Mannich and Aldol reactions in scCO2. Chem Commun 2001, (18):1842–1843

    Google Scholar 

  70. Komoto I, Kobayashi S (2004) Lewis acid catalysis in supercritical carbon dioxide. Use of poly(ethylene glycol) derivatives and perfluoroalkylbenzenes as surfactant molecules which enable efficient catalysis in scCO2. J Org Chem 69(3):680–688

    Article  CAS  Google Scholar 

  71. Kayaki Y, Noguchi Y, Iwasa S et al (1999) An efficient carbonylation of aryl halides catalysed by palladium complexes with phosphite ligands in supercritical carbon dioxide. Chem Commun 1999, (13):1235–1236

    Google Scholar 

  72. Pauson PL (1985) The khand reaction: a convenient and general route to a wide range of cyclopentenone derivatives. Tetrahedron 41(24):5855–5860

    Article  CAS  Google Scholar 

  73. Schore NE (1988) Transition metal-mediated cycloaddition reactions of alkynes in organic synthesis. Chem Rev 88(7):1081–1119

    Article  CAS  Google Scholar 

  74. Jeong N, Hwang SH, Lee YW et al (1997) Catalytic Pauson–Khand reaction in super critical fluids. J Am Chem Soc 119(43):10549–10550

    Article  CAS  Google Scholar 

  75. Li G, Gao J, Wei H-X et al (2000) New CC bond formation via nonstoichiometric Titanium(IV) halide mediated vicinal difunctionalization of α, β-unsaturated acyclic ketones. Org Lett 2(5):617–620

    Article  CAS  Google Scholar 

  76. Shi M, Xu Y-M (2003) An unexpected highly stereoselective double aza-Baylis–Hillman reaction of sulfonated imines with phenyl vinyl ketone. J Org Chem 68(12):4784–4790

    Article  CAS  Google Scholar 

  77. Rose PM, Clifford AA, Rayner CM (2002) The Baylis-Hillman reaction in supercritical carbon dioxide: enhanced reaction rates, unprecedented ether formation, and a novel phase-dependent 3-component coupling. Chem Commun 2002, (9):968–969

    Google Scholar 

  78. Cheng J-S, Jiang H-F (2004) Palladium-catalyzed regioselective cyclotrimerization of acetylenes in supercritical carbon dioxide. Eur J Org Chem 2004(3):643–646

    Article  Google Scholar 

  79. Montilla F, Avilés T, Casimiro T et al (2001) CpCo(CO)2-catalysed cyclotrimerisation of alkynes in supercritical carbon dioxide. J Organomet Chem 632(1–2):113–118

    Article  CAS  Google Scholar 

  80. Musie G, Wei M, Subramaniam B et al (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord Chem Rev 219–221:789–820

    Article  Google Scholar 

  81. Maayan G, Ganchegui B, Leitner W et al (2006) Selective aerobic oxidation in supercritical carbon dioxide catalyzed by the H5PV2Mo10O40 polyoxometalate. Chem Commun 2006(21):2230–2232

    Article  Google Scholar 

  82. Leitner W (1999) Reactions in supercritical carbon dioxide. Top Curr Chem 206:107–132

    Article  Google Scholar 

  83. Chang Y, Jiang T, Han B et al (2003) Aerobic oxidation of cyclohexanol to cyclohexanone in compressed CO2 and liquid solvents. Ind Eng Chem Res 42(25):6384–6388

    Article  CAS  Google Scholar 

  84. Herbert M, Montilla F, Galindo A (2010) Supercritical carbon dioxide, a new medium for aerobic alcohol oxidations catalysed by copper-TEMPO. Dalton Trans 39(3):900–907

    Article  CAS  Google Scholar 

  85. Ansari MB, Park S-E (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5(11):9419–9437

    Article  CAS  Google Scholar 

  86. Gu L, Zhang Y (2010) Unexpected CO2 splitting reactions to form CO with N-heterocyclic carbenes as organocatalysts and aromatic aldehydes as oxygen acceptors. J Am Chem Soc 132(3):914–915

    Article  CAS  Google Scholar 

  87. Nair V, Varghese V, Paul RR et al (2010) NHC catalyzed transformation of aromatic aldehydes to acids by carbon dioxide: an unexpected reaction. Org Lett 12(11):2653–2655

    Article  CAS  Google Scholar 

  88. Chiang P-C, Bode JW (2011) On the role of CO2 in NHC-catalyzed oxidation of aldehydes. Org Lett 13(9):2422–2425

    Article  CAS  Google Scholar 

  89. Ren X, Yuan Y, Ju Y et al (2012) Oxidation ability of CO2 for the transformation of cinnamic aldehydes to acids catalyzed by N-heterocyclic carbene: combining computational and experimental studies. ChemCatChem 4(12):1943–1951

    Article  CAS  Google Scholar 

  90. Olsen MHN, Salomão GC, Drago V et al (2005) Oxidation of cyclohexane in supercritical carbon dioxide catalyzed by iron tetraphenylporphyrin. J Supercrit Fluids 34(2):119–124

    Article  CAS  Google Scholar 

  91. Kokubo Y, Wu X-W, Oshima Y et al (2004) Aerobic oxidation of cyclohexene catalyzed by Fe(III)(5,10,15,20-tetrakis(pentafluorophenyl)porphyrin)Cl in supercritical CO2. J Supercrit Fluids 30(2):225–235

    Article  CAS  Google Scholar 

  92. Nolen SA, Lu J, Brown JS et al (2002) Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy acids. Ind Eng Chem Res 41(3):316–323

    Article  CAS  Google Scholar 

  93. Jiang H, Jia L, Li J (2000) Wacker reaction in supercritical carbon dioxide. Green Chem 2(4):161–164

    Article  CAS  Google Scholar 

  94. Jiang H-F, Shen Y-X, Wang Z-Y (2008) Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in scCO2. Tetrahedron 64(3):508–514

    Article  CAS  Google Scholar 

  95. ten Brink GJ, Arends IWCE, Sheldon RA (2004) The Baeyer–Villiger reaction: new developments toward greener procedures. Chem Rev 104(9):4105–4124

    Article  CAS  Google Scholar 

  96. Bolm C, Palazzi C, Francio G et al (2002) Baeyer–Villiger oxidation in compressed CO2. Chem Commun 2002, (15):1588–1589

    Google Scholar 

  97. DeSimone JM, Guan Z, Elsbernd CS (1992) Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257:945–947

    Article  CAS  Google Scholar 

  98. Clark MR, DeSimone JM (1995) Cationic polymerization of vinyl and cyclic ethers in supercritical and liquid carbon dioxide. Macromolecules 28(8):3002–3004

    Article  CAS  Google Scholar 

  99. Albertsson A-C, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6):1466–1486

    Article  CAS  Google Scholar 

  100. Bratton D, Brown M, Howdle SM (2005) Tin(II) ethyl hexanoate catalyzed precipitation polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 38(4):1190–1195

    Article  CAS  Google Scholar 

  101. Hamilton JG, Rooney JJ, DeSimone JM et al (1998) Stereochemistry of ring-opened metathesis polymers prepared in liquid CO2 at high pressure using Ru(H2O)6(Tos)2 as catalyst. Macromolecules 31(13):4387–4389

    Article  CAS  Google Scholar 

  102. Hu X, Blanda MT, Venumbaka SR et al (2005) Ring-opening metathesis polymerization (ROMP) of norbornene in supercritical carbon dioxide using well-defined metal carbene catalysts. Polym Advan Technol 16(2–3):146–149

    Article  CAS  Google Scholar 

  103. Hori H, Six C, Leitner W (1999) Rhodium-catalyzed phenylacetylene polymerization in compressed carbon dioxide. Macromolecules 32(10):3178–3182

    Article  CAS  Google Scholar 

  104. Gimenez-Pedros M, Tortosa-Estorach C, Bastero A et al (2006) Alternating CO/tert-butylstyrene copolymerisation using soluble cationic palladium complexes in supercritical carbon dioxide. Green Chem 8(10):875–877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, R., Diao, ZF., Yang, ZZ., He, LN. (2014). Homogeneous Catalysis Promoted by Carbon Dioxide. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_13

Download citation

Publish with us

Policies and ethics