Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7070))

Abstract

Ray Solomonoff invented the notion of universal induction featuring an aptly termed “universal” prior probability function over all possible computable environments [9]. The essential property of this prior was its ability to dominate all other such priors. Later, Levin introduced another construction — a mixture of all possible priors or “universal mixture”[12]. These priors are well known to be equivalent up to multiplicative constants. Here, we seek to clarify further the relationships between these three characterisations of a universal prior (Solomonoff’s, universal mixtures, and universally dominant priors). We see that the the constructions of Solomonoff and Levin define an identical class of priors, while the class of universally dominant priors is strictly larger. We provide some characterisation of the discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaitin, G.J.: A theory of program size formally identical to information theory. Journal of the ACM 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Downey, R.G., Hirschfeldt, D.R.: Kolmogorov complexity of finite strings. In: Algorithmic Randomness and Complexity, pp. 110–153. Springer, New York (2010)

    Chapter  Google Scholar 

  3. Figueira, S., Stephan, F., Wu, G.: Randomness and universal machines. Journal of Complexity 22(6), 738–751 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hutter, M.: Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer (2005)

    Google Scholar 

  5. Hutter, M.: On universal prediction and Bayesian confirmation. Theoretical Computer Science 384(1), 33–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Levin, L.A.: Some Theorems on the Algorithmic Approach to Probability Theory and Information Theory. Phd dissertation, Moscow University, Moscow (1971)

    Google Scholar 

  7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2008)

    Google Scholar 

  8. Schnorr, C.: Process complexity and effective random tests. Journal of Computer and System Sciences 7(4), 376–388 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Solomonoff, R.J.: A formal theory of inductive inference. parts I and II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Solomonoff, R.J.: Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transactions on Information Theory 24(4), 422–432 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1936)

    MathSciNet  Google Scholar 

  12. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wood, I., Sunehag, P., Hutter, M. (2013). (Non-)Equivalence of Universal Priors. In: Dowe, D.L. (eds) Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Lecture Notes in Computer Science, vol 7070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44958-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44958-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44957-4

  • Online ISBN: 978-3-642-44958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics