Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7070))

  • 1613 Accesses

Abstract

This paper deals with the question: what are the key requirements for a physical system to perform digital computation? Oftentimes, cognitive scientists are quick to employ the notion of computation simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if there is a consensus on just what it takes for a physical system to compute. Some cognitive scientists in referring to digital computation simply adhere to Turing computability. But if cognition is indeed computational, then it is concrete computation that is required for explaining cognition as an embodied phenomenon. Three accounts of computation are examined here: 1. Formal Symbol Manipulation. 2. Physical Symbol Systems and 3.The Mechanistic account. I argue that the differing requirements implied by these accounts justify the demand that one commits to a particular account when employing the notion of digital computation in regard to physical systems, rather than use these accounts interchangeably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickhard, M.H., Terveen, L.: Foundational issues in artificial intelligence and cognitive science: Impasse and solution. Elsevier Scientific, Amsterdam (1995)

    Google Scholar 

  2. Calude, C.S.: Information: The algorithmic paradigm. In: Sommaruga, G. (ed.) Formal Theories of Information. LNCS, vol. 5363, pp. 79–94. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoretical Computer Science 412(41), 5668–5677 (2011), doi:10.1016/j.tcs.2011.06.021

    Article  MathSciNet  MATH  Google Scholar 

  4. Chalmers, D.: On implementing a computation. Minds and Machines 4, 391–402 (1994)

    Article  Google Scholar 

  5. Chalmers, D.J.: A computational foundation for the study of cognition. Journal of Cognitive Science 12(4), 323–357 (2011)

    Google Scholar 

  6. Copeland, B.J.: What is computation? Synthese 108, 335–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Floridi, L.: Philosophical conceptions of information. In: Sommaruga, G. (ed.) Formal Theories of Information. LNCS, vol. 5363, pp. 13–53. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Fodor, J.A.: The language of thought. Harvard University Press, Cambridge (1975)

    Google Scholar 

  9. Fodor, J.A.: Methodological solipsism considered as a research strategy in cognitive science. Behavioral and Brain Sciences 3, 63–73 (1980)

    Article  Google Scholar 

  10. Fodor, J.A., Pylyshyn, Z.W.: Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988)

    Article  Google Scholar 

  11. Fresco, N.: Explaining computation without semantics: keeping it simple. Minds and Machines 20, 165–181 (2010)

    Article  Google Scholar 

  12. Fresco, N.: Concrete Digital Computation: What Does it Take for a Physical System to Compute? Journal of Logic, Language and Information 20(4), 513–537 (2011), doi:10.1007/s10849-011-9147-8

    Article  MathSciNet  Google Scholar 

  13. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler, H.J., Kunen, K. (eds.) The Kleene Symposium, pp. 123–148. North-Holland, Amsterdam (1980)

    Chapter  Google Scholar 

  14. Haugeland, J.: AI: the very idea. The MIT Press, Cambridge (1985)

    Google Scholar 

  15. Israel, D.: Reflections on Gödel’s and Gandy’s reflections on Turing’s thesis. Minds and Machines 12, 181–201 (2002)

    Article  MATH  Google Scholar 

  16. Kleene, S.C.: Mathematical logic. Dover, New York (2002)

    MATH  Google Scholar 

  17. Marr, D.: Vision: a computational investigation into the human representation and processing visual information. Freeman & Company, New York (1982)

    Google Scholar 

  18. Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood (1972)

    Google Scholar 

  19. Newell, A., Simon, H.A.: Computer science as an empirical enquiry: symbols and search. Communications of the ACM 19, 113–126 (1976)

    Article  MathSciNet  Google Scholar 

  20. Newell, A.: Physical symbol systems. Cognitive Science 4, 135–183 (1980)

    Article  Google Scholar 

  21. Piccinini, G.: Computational explanation in neuroscience. Synthese 153, 343–353 (2006)

    Article  MathSciNet  Google Scholar 

  22. Piccinini, G.: Computing mechanisms. Philosophy of Science 74, 501–526 (2007)

    Article  MathSciNet  Google Scholar 

  23. Piccinini, G.: Computation without representation. Philosophical Studies 137, 205–241 (2008a)

    Article  MathSciNet  Google Scholar 

  24. Piccinini, G.: Computers. Pacific Philosophical Quarterly 89, 32–73 (2008b)

    Article  Google Scholar 

  25. Piccinini, G., Scarantino, A.: Information processing, computation, and cognition. Journal of Biological Physics 37, 1–38 (2011)

    Article  Google Scholar 

  26. Pylyshyn, Z.W.: Computation and cognition. The MIT Press, Cambridge (1984)

    Google Scholar 

  27. Pylyshyn, Z.W.: Computing in cognitive science. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 51–91. The MIT Press, Cambridge (1989)

    Google Scholar 

  28. Pylyshyn, Z.W.: Things and places: how the mind connects with the world (Jean Nicod Lectures). The MIT Press, Cambridge (2007)

    Google Scholar 

  29. Scheutz, M.: When physical systems realize functions. Minds and Machines 9, 161–196 (1999)

    Article  Google Scholar 

  30. Scheutz, M.: Computationalism – the next generation. In: Scheutz, M. (ed.) Computationalism: New Directions, pp. 1–22. The MIT Press, Cambridge (2002)

    Google Scholar 

  31. Shagrir, O.: What is computer science about? The Monist 82, 131–149 (1999)

    Article  Google Scholar 

  32. Shagrir, O.: Why we view the brain as a computer. Synthese 153, 393–416 (2006)

    Article  MathSciNet  Google Scholar 

  33. Shannon, C.E.: A mathematical theory of communication. Mobile Computing and Communications Review 5, 1–55 (1948)

    MathSciNet  Google Scholar 

  34. Smith, B.C.: The foundations of computing. In: Scheutz, M. (ed.) Computationalism: New Directions, pp. 23–58. The MIT Press, Cambridge (2002)

    Google Scholar 

  35. Smith, B.C.: Age of significance: Introduction (2010), http://www.ageofsignificance.org (retrieved May 3, 2010)

  36. Solomonoff, R.J.: Algorithmic probability - theory and applications. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Statistical Learning, pp. 1–23. Springer Science+Business Media, NY (2009)

    Chapter  Google Scholar 

  37. Thelen, E., Smith, L.B.: A dynamical systems approach to the development of cognition and action. The MIT press, Cambridge (1994)

    Google Scholar 

  38. van Gelder, T., Port, R.F.: It’s about time: an overview of the dynamical approach to cognition. In: van Gelder, T., Port, R.F. (eds.) Mind as Motion. The MIT Press, Cambridge (1995)

    Google Scholar 

  39. van Rooij, I.: The tractable cognition thesis. Cognitive Science 32, 939–984 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fresco, N. (2013). A Critical Survey of Some Competing Accounts of Concrete Digital Computation. In: Dowe, D.L. (eds) Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Lecture Notes in Computer Science, vol 7070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44958-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44958-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44957-4

  • Online ISBN: 978-3-642-44958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics