Skip to main content

Quantum Dot-Electrochemical and Photoelectrochemical Biosensing

  • Chapter
  • First Online:
Quantum Dots for DNA Biosensing

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1200 Accesses

Abstract

Besides excellent optical and electrochemiluminescence properties of quantum dots, their electrochemical and photoelectrochemical behaviors have also been discovered and well employed in DNA biosensing. This chapter presents a general description of the electrochemical and photoelectrochemical properties of QDs with their applications in DNA biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haram SK, Quinn BM, Bard AJ (2001) Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J Am Chem Soc 123:8860–8861

    Article  CAS  Google Scholar 

  2. Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4:1153–1161

    Article  CAS  Google Scholar 

  3. Gao M, Sun J, Dulkeith E, Gaponik N, Lemmer U, Feldmann J (2002) Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method. Langmuir 18:4098–4102

    Article  CAS  Google Scholar 

  4. Greene IA, Wu F, Zhang JZ, Chen S (2003) Electronic conductivity of semiconductor nanoparticle monolayers at the Air|Water interface. J Phys Chem B 107:5733–5739

    Article  CAS  Google Scholar 

  5. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao MY, Eychmuller A, Gaponik NN (2005) Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J Phys Chem B 109:1094–1100

    Article  CAS  Google Scholar 

  6. Li J, Zou GZ, Hu XF, Zhang XL (2009) Electrochemistry of thiol-capped CdTe quantum dots and its sensing application. J Electroanaly Chem 625:88–91

    Article  CAS  Google Scholar 

  7. Matteo A, Christophe L, Serena S, Alberto C (2012) Electrochemical properties of CdSe and CdTe quantum dots. Chem Soc Rev 41:5728–5743

    Article  Google Scholar 

  8. Davies TJ, Moore RR, Banks CE, Compton RG (2004) The cyclic voltammetric response of electrochemically heterogeneous surfaces. J Electroanal Chem 574:123–152

    Article  CAS  Google Scholar 

  9. Wan L, Cen T, Michael AL, Héctor DA, Daniel CR (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270

    Article  Google Scholar 

  10. Anna TV, Ian AK, Kostya SN, Cinzia C, Axel E, Ernie WH, Robert AWD (2011) Electrochemical behavior of monolayer and bilayer graphene. ACS Nano 5:8809–8815

    Article  Google Scholar 

  11. Zuo XL, He SJ, Li D, Peng C, Huang Q, Song SP, Fan CH (2010) Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939

    Article  CAS  Google Scholar 

  12. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  13. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  14. Wang K, Liu Q, Guan QM, Wu J, Li HN, Yan JJ (2011) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26:2252–2257

    Article  CAS  Google Scholar 

  15. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, Song L, Alemany LB, Zhan XB, Gao GH, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  Google Scholar 

  16. Zhao XM, Zhou SW, Jiang LP, Hou WH, Shen QM, Zhu JJ (2012) Graphene–CdS nanocomposites: facile one-step synthesis and enhanced photoelectrochemical cytosensing. Chem Eur J 18:4974–4981

    Article  CAS  Google Scholar 

  17. Shen QM, Zhou SW, Zhao XM, Jiang LP, Hou WH, Zhu JJ (2012) Anatase TiO2 nanoparticle–graphene nanocomposites: one-step preparation and their enhanced direct electrochemistry of hemoglobin. Anal Methods 4:619–622

    Article  CAS  Google Scholar 

  18. Service RF (1998) Coming soon: the pocket DNA sequencer. Science 282:399–401

    Article  CAS  Google Scholar 

  19. Staudt LM (2001) Gene expression physiology and pathophysiology of the immune system. Trends Immunol 22:35–40

    Article  CAS  Google Scholar 

  20. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  21. Ji HX, Yan F, Lei JP, Ju XH (2012) Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. Anal Chem 84:7166–7171

    Article  CAS  Google Scholar 

  22. Xu Q, Wang JH, Wang Z, Yin ZH, Yang Q, Zhao YD (2008) Interaction of CdTe quantum dots with DNA. Electrochem Commun 10:1337–1339

    Article  CAS  Google Scholar 

  23. Yin CX, Yang T, Zhang W, Zhou XD, Jiao K (2010) Electrochemical biosensing for dsDNA damage induced by PbSe quantum dots under UV irradiation. Chinese Chem Lett 21:716–719

    Article  CAS  Google Scholar 

  24. Huang HP, Li JJ, Tan YL, Zhou JJ, Zhu JJ (2010) Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst 135:1773–1778

    Article  CAS  Google Scholar 

  25. Chen JH, Zhang J, Yang HH, Fu FF, Chen GN (2010) A strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease. Biosens Bioelectron 26:144–148

    Article  CAS  Google Scholar 

  26. Wang J, Liu GD, Merkoi A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 125:3214–3215

    Article  CAS  Google Scholar 

  27. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  28. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  29. Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Article  CAS  Google Scholar 

  30. Hesselberth J, Robertson MP, Jhaveri S, Ellington AD (2000) In vitro selection of nucleic acids for diagnostic applications. Rev Mol Biotechnol 74:15–25

    Article  CAS  Google Scholar 

  31. Smith JE, Medley CD, Tang ZW, Shang DH, Lofton C, Tan WH (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 79:3075–3082

    Article  CAS  Google Scholar 

  32. Zhang SS, Xia JP, Li XM (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem 80:8382–8388

    Article  CAS  Google Scholar 

  33. Lu Y, Li XC, Zhang LM, Yu P, Su L, Mao LQ (2008) Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem 80:1883–1890

    Article  CAS  Google Scholar 

  34. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  Google Scholar 

  35. Breaker RR (1997) DNA aptamers and DNA enzymes. Curr Opin Chem Biol 1:26–31

    Article  CAS  Google Scholar 

  36. Chen Y, Wang MS, Mao CD (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43:3554–3557

    Article  CAS  Google Scholar 

  37. Yoshizumi J, Kumamoto S, Nakamura M, Yamana K (2008) Target-induced strand release (TISR) from aptamer–DNA duplex: a general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 133:323–325

    Article  CAS  Google Scholar 

  38. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan CH (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  39. Zhao Q, Li XF, Le XC (2008) Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal Chem 80:3915–3920

    Article  CAS  Google Scholar 

  40. Tombelli S, Minunni M, Luzi E, Mascini M (2005) Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochem 67:135–141

    Article  CAS  Google Scholar 

  41. Zhou JJ, Huang HP, Xuan J, Zhang JR, Zhu JJ (2010) Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP. Biosens Bioelectron 26:834–840

    Article  CAS  Google Scholar 

  42. Dong XY, Mi XN, Zhao WW, Xu JJ, Chen HY (2011) CdS nanoparticles functionalized colloidal carbon particles: Preparation, characterization and application for electrochemical detection of thrombin. Biosens Bioelectron 26:3654–3659

    Article  CAS  Google Scholar 

  43. Zhang HX, Jiang BY, Xiang Y, Zhang YY, Chai YQ, Yuan R (2011) Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules. Analy Chim Acta 688:99–103

    Article  CAS  Google Scholar 

  44. Hansen JA, Wang J, Kawde A, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229

    Article  CAS  Google Scholar 

  45. Li YJ, Ma MJ, Zhu J-J (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. Anal Chem 84:10492–10499

    Article  CAS  Google Scholar 

  46. Wang GL, Xu JJ, Chen HY, Fu SZ (2009) Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid. Biosens Bioelectron 25:791–796

    Article  CAS  Google Scholar 

  47. Wang GL, Yu PP, Xu JJ, Chen HY (2009) A label-free photoelectrochemical immunosensor based on water-soluble CdS quantum dots. J Phys Chem C 113:11142–11148

    Article  CAS  Google Scholar 

  48. Zhang XR, Zhao YQ, Zhou HR, Qu B (2011) A new strategy for photoelectrochemical DNA biosensor using chemiluminescence reaction as light source. Biosens Bioelectron 26:2737–2741

    Article  CAS  Google Scholar 

  49. Baş D, Boyacı İH (2011) Photoelectrochemical competitive DNA hybridization assay using semiconductor quantum dot conjugated oligonucleotides. Anal Bioanal Chem 400:703–707

    Article  Google Scholar 

  50. Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem Int Ed 40(10):1861–1864

    Article  CAS  Google Scholar 

  51. Porath D, Cuniberti G, Felice RD (2004) Charge transport in DNA-based devices. Top Curr Chem 37:183–227

    Google Scholar 

  52. De Pablo PJ, Moreno-Herrero F, Colchero J (2000) Absence of dc-conductivity in λ-DNA. Phys Rev Lett 85:4992–4995

    Article  Google Scholar 

  53. OKNeill MA, Barton JK (2004) DNA charge transport: conformationally gated hopping through stacked domains. J Am Chem Soc 126:11471–11483

    Article  Google Scholar 

  54. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  55. Gill R, Patolsky F, Katz E, Willner I (2005) Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems. Angew Chem Int Ed 44:4554–4557

    Article  CAS  Google Scholar 

  56. Freeman R, Gill R, Beissenhirtz M, Willner I (2007) Self-assembly of semiconductor quantum-dots on electrodes for photoelectrochemical biosensing. Photochem Photobiol Sci 6:416–422

    Article  CAS  Google Scholar 

  57. Zhao WW, Wang J, Xu JJ, Chen HY (2011) Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection. Chem Commun 47:10990–10992

    Article  CAS  Google Scholar 

  58. Zhao WW, Yu PP, Shan Y, Wang J, Xu JJ, Chen HY (2012) Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application. Anal Chem 84:5892–5897

    Article  CAS  Google Scholar 

  59. Golub E, Niazov A, Freeman R, Zatsepin M, Willner I (2012) Photoelectrochemical biosensors without external irradiation: probing enzyme activities and DNA sensing using Hemin/GQuadruplex-stimulated chemiluminescence resonance energy transfer (CRET) generation of photocurrents. J Phys Chem C 116:13827–13834

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zhu, JJ., Huang, HP., Cheng, FF. (2013). Quantum Dot-Electrochemical and Photoelectrochemical Biosensing. In: Quantum Dots for DNA Biosensing. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44910-9_5

Download citation

Publish with us

Policies and ethics