Skip to main content

Quantum Dot-Fluorescence-Based Biosensing

  • Chapter
  • First Online:
Quantum Dots for DNA Biosensing

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Since the emergence of quantum dots (QDs), their excellent fluorescent properties have been widely used in the fabrication of biological sensors for various analytes, such as metal ions, environmental samples, protein, deoxyribonucleic acid (DNA), and ribonucleic acid (RNA). More importantly, some of these sensors can realize not only fixed cell labeling, imaging of live cell dynamics, in situ tissue profiling, but also in vivo animal imaging. A lot of reviews have well summarized these in vitro diagnostic applications and in vivo imaging and sensing applications of QDs. In this chapter, we mainly focus on QDs-fluorescence-based biosensing in DNA, RNA, and DNA microarrays. The introduction of QDs in this aspect promoted the sensitivity, stability, and diversity of DNA and RNA detection obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu HC, Schops O, Woggon U, Niemeyer CM (2008) Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. J Am Chem Soc 130(14):4815–4827

    Article  CAS  Google Scholar 

  2. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl 45(28):4562–4589

    Article  CAS  Google Scholar 

  3. Tu DT, Liu LQ, Ju Q, Liu YS, Zhu HM, Li RF, Chen XY (2011) Interfacial self-assembly of cell-like filamentous microcapsules. Angew Chem Int Ed 50(28):6306–6310

    Article  CAS  Google Scholar 

  4. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21(11):1387–1395

    Article  CAS  Google Scholar 

  5. Clapp A, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J Am Chem Soc 127:1242–1250

    Article  CAS  Google Scholar 

  6. Chen GW, Song FL, Xiong XQ, Peng XJ (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52(33):11228–11245

    Google Scholar 

  7. Noor MO, Krull UJ (2013) Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 85(15):7502–7511

    Article  CAS  Google Scholar 

  8. Zhang CL, Xu J, Zhang SM, Ji XH, He ZK (2012) One-pot synthesized DNA-CdTe quantum dots applied in a biosensor for the detection of sequence-specific oligonucleotides. Chem Eur J 18:8296–8300

    Article  CAS  Google Scholar 

  9. Cui DX, Pan BF, Zhang H, Gao F, Wu RN, Wang JP, He R, Asahi T (2008) Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal Chem 80:7996–8001

    Article  CAS  Google Scholar 

  10. Chou CC, Huang YH (2012) Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection. Sensors 12(12):16660–16672

    Article  CAS  Google Scholar 

  11. Vannoy CH, Chong L, Le C, Krull UJA (2013) Competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors. Anal Chim Acta 759:92–99

    Article  CAS  Google Scholar 

  12. Medintz IL, Berti L, Pons T, Grimes AF, English DS, Alessandrini A, Facci P, Mattoussi H (2007) A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett 7(6):1741–1748

    Article  CAS  Google Scholar 

  13. Yeh H-Y, Yates MV, Mulchandani A, Chen W (2010) Molecular beacon—quantum dot—Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem Commun 46:3914–3916

    Article  CAS  Google Scholar 

  14. Kim JH, Chaudhary S, Ozkan M (2007) Multicolor hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection. Nanotechnology 18:195105–195112

    Article  Google Scholar 

  15. Tan L, Li Y, Drake TJ, Moroz L, Wang K, Li J, Munteanu A, Chaoyong JY, Martinez K, Tas W (2005) Molecular beacons for bioanalytical applications. Analyst 130:1002–1005

    Article  CAS  Google Scholar 

  16. Zhang BQ, Zhang YJ, Mallapragada SK, Clapp AR (2011) Sensing polymer/DNA polyplex dissociation using quantum dot fluorophores. ACS Nano 5(1):129–138

    Article  CAS  Google Scholar 

  17. Wu YZ, Eisele K, Doroshenko M, Algara-Siller G, Kaiser U, Koynov K, Weil T (2012) A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging. Small 8(22):3465–3475

    Article  CAS  Google Scholar 

  18. Smith AM, Dave S, Nie SM, True L, Gao XH (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6(2):231–244

    Article  CAS  Google Scholar 

  19. Han MY, Gao XH, Su JZ, Nie SM (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotech 19:631–635

    Article  CAS  Google Scholar 

  20. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nature Mater 4:826–831

    Article  CAS  Google Scholar 

  21. Zhang CY, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82:1921–1927

    Article  CAS  Google Scholar 

  22. Zhou J, Wang QX, Zhang CY (2013) Liposome-quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. J Am Chem Soc 135:2056–2059

    Article  CAS  Google Scholar 

  23. Giri S, Sykes EA, Jennings TL, Chan WCW (2011) Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS nano 5(3):1580–1587

    Article  CAS  Google Scholar 

  24. Cheng YQ, Zhang X, Li ZP, Jiao XX, Wang YC, Zhang YL (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 121:3318–3322

    Google Scholar 

  25. Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13:151–159

    Article  CAS  Google Scholar 

  26. Arenz C (2006) MicroRNAs—zuknftige Wirkstoff-Targets? Angew Chem Int Ed 118:5170–5172

    Google Scholar 

  27. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11:1737–1744

    Article  CAS  Google Scholar 

  28. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  Google Scholar 

  29. Tu YQ, Wu P, Zhang H, Cai CX (2012) Fluorescence quenching of gold nanoparticles integrating with a conformation-switched hairpin oligonucleotide probe for microRNA detection. Chem Commun 48:10718–10720

    Article  CAS  Google Scholar 

  30. Li W, Ruan KC (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394:1117–1124

    Article  CAS  Google Scholar 

  31. Gao ZQ, Peng YF (2011) MicroRNA detection by microarray. Biosens Bioelectron 26:3768–3773

    Article  CAS  Google Scholar 

  32. Cui ZQ, Ren Q, Wei HP, Chen Z, Deng JY, Zhang ZP, Zhang XE (2011) Quantum dot–aptamer nanoprobes for recognizing and labeling influenza A virus particles. Nanoscale 3:2454–2457

    Article  CAS  Google Scholar 

  33. Bi S, Zhou H, Zhang SS (2010) A novel synergistic enhanced chemiluminescence achieved by a multiplex nanoprobe for biological applications combined with dual-amplification of magnetic nanoparticles. Chem Sci 1:681–687

    Article  CAS  Google Scholar 

  34. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, Ruan KC (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33:e17

    Article  Google Scholar 

  35. Eastman PS, Ruan WM, Doctolero M, Nuttall R, Feo GD, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FQF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6:1059–1064

    Article  CAS  Google Scholar 

  36. Li LL, Chen Y, Lu Q, Ji J, Shen YY, Xu M, Fei R, Yang GH, Zhang K, Zhang JR, Zhu JJ (2013) Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Scientific Reports 3:1529

    CAS  Google Scholar 

  37. Wagh A, Jyoti F, Mallik S, Qian S, Leclerc E, Law B (2013) Polymeric nanoparticles with sequential and multiple FRET cascade mechanisms for multicolor and multiplexed imaging. Small 9(12):2129–2139

    Article  CAS  Google Scholar 

  38. Zhu D, Jiang XX, Zhao CE, Sun XL, Zhang JR, Zhu JJ (2010) Green synthesis and potential application of low-toxic Mn: ZnSe/ZnS core/shell luminescent nanocrystals. Chem Commun 46:5226–5228

    Article  CAS  Google Scholar 

  39. Liang GX, Pan HC, Li Y, Jiang LP, Zhang JR, Zhu JJ (2009) Near infrared sensing based on fluorescence resonance energy transfer between Mn: CdTe quantum dots and Au nanorods. Biosens Bioelectron 24(12):3693–3697

    Article  CAS  Google Scholar 

  40. Sharon E, Freeman R, Willner I (2010) CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem 82:7073–7077

    Article  CAS  Google Scholar 

  41. Dong HF, Gao WC, Yan F, Ji HX, Ju HX (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    Article  CAS  Google Scholar 

  42. Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-conjugated hybridization probes for preliminary screening of siRNA sequences. J Am Chem Soc 127:11328–11335

    Article  CAS  Google Scholar 

  43. Bi S, Ji B, Zhang ZP, Zhu JJ (2013) Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem Sci 4:1858–1863

    Article  CAS  Google Scholar 

  44. Li CP, Li ZP, Jia HX, Yan JL (2011) One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem Commun 47:2595–2597

    Article  CAS  Google Scholar 

  45. Dong HF, Zhang J, Ju HX, Lu HT, Wang SY, Jin S, Hao KH, Du HW, Zhang XJ (2012) Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem 84(10):4587–4593

    Article  CAS  Google Scholar 

  46. Zhang Y, Zhang CY (2012) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84:224–231

    Article  CAS  Google Scholar 

  47. Tan E, Wong J, Nguyen D, Zhang Y, Erwin B, Van Ness LK, Baker SM, Galas DJ, Niemz A (2005) Isothermal DNA amplification coupled with DNA nanosphere-based colorimetric detection. Anal Chem 77:7984–7992

    Article  CAS  Google Scholar 

  48. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744

    Article  CAS  Google Scholar 

  49. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  Google Scholar 

  50. Zhang M, Guo SM, Li YR, Zuo P, Ye BC (2012) A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem Commun 48:5488–5490

    Article  CAS  Google Scholar 

  51. Yang SW, Vosch T (2011) Rapid detection of microRNA by a silver nanocluster DNA probe. Anal Chem 83:6935–6939

    Article  CAS  Google Scholar 

  52. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039

    Article  CAS  Google Scholar 

  53. Liu YQ, Zhang M, Yin BC, Ye BC (2012) Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification. Anal Chem 84:5165–5169

    Article  CAS  Google Scholar 

  54. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed 49:5665–5667

    Article  CAS  Google Scholar 

  55. Jia X, Li J, Han L, Ren J, Yang X, Wang E (2012) DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 6:3311–3317

    Article  CAS  Google Scholar 

  56. Chen J, Liu J, Fang Z, Zeng L (2011) Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem Commun 48:1057–1059

    Article  Google Scholar 

  57. Wang XP, Yin BC, Ye BC (2013) A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Adv 3:8633–8636

    Article  CAS  Google Scholar 

  58. Bentolila LA, Weiss S (2006) Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem Biophys 45:59–70

    Article  CAS  Google Scholar 

  59. Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucl Acids Res 33(18):e161

    Article  Google Scholar 

  60. Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, MacDermott SA, Twomey D, Levenson R, Liu YJA, Golub TR, Loda M, Byers R (2006) Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem Biophys Res Commun 348:628–636

    Article  CAS  Google Scholar 

  61. Shen YY, Li LL, Lu Q, Ji J, Fei R, Zhang JR, Abdel-Halim ES, Zhu J-J (2012) Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS–SiO2 quantum dots and their application in the detection of Cu(II). Chem Commun 48:2222–2224

    Article  CAS  Google Scholar 

  62. Choi Y, Kim HP, Hong SM, Ryu JY, Han SJ, Song R (2009) In situ visualization of gene expression using polymer-coated quantum–dot–DNA conjugates. Small 5(18):2085–2091

    Article  CAS  Google Scholar 

  63. Wang J (2000) From DNA biosensors to gene chips. Nucl Acids Res 28:3011–3016

    Article  CAS  Google Scholar 

  64. Hahn S, Mergenthaler S, Zimmermann B, Holzgreve W (2005) Nucleic acid based biosensors: the desires of the user. Bioelectrochemistry 67:151–154

    Article  CAS  Google Scholar 

  65. Albelda SM, Shepard JRE (2000) Functional genomics and expression profiling: be there or be square. Am J Respir Cell Mol Biol 23:265–269

    Article  CAS  Google Scholar 

  66. Hoopes L (2008) Genetic diagnosis: DNA microarrays and caner. Nature Education 1:1

    Google Scholar 

  67. Shepard JRE (2006) Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples. Anal Chem 78(8):2478–2486

    Article  CAS  Google Scholar 

  68. Meissner KE, Herz E, Kruzelock RP, Spillman WB (2003) Quantum dot-tagged microspheres for fluid-based DNA microarrays. Phys Stat Sol (C) 4:1355–1359

    Article  Google Scholar 

  69. Pfeifer GP (2000) p53 mutational spectra and the role of methylated CpG sequence. Mutat Res 450:155–166

    Article  CAS  Google Scholar 

  70. Gerion D, Chen FQ, Kannan B, Fu AH, Parak WJ, Chen DJ, Majumdar A, Alivisatos AP (2003) Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem 75(18):4766–4772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zhu, JJ., Li, JJ., Cheng, FF. (2013). Quantum Dot-Fluorescence-Based Biosensing. In: Quantum Dots for DNA Biosensing. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44910-9_3

Download citation

Publish with us

Policies and ethics