Skip to main content

Quantum Dots

  • Chapter
  • First Online:
Quantum Dots for DNA Biosensing

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

In the past 30 years, quantum dots (QDs) have developed a lot from their kinds to the various application areas. Traditional nanocrystals are usually composed of elements from groups III–V, II–VI, or IV–VI of the periodic table, such as CdS, CdSe, CdTe, CdS@ZnS, CdSe@ZnS, CdSeTe@ZnS. These QDs own excellent fluorescence properties and have been widely used in biosensing and intracellular or in vivo imaging. However, the leaked cadmium ions are culprits for the observed cytotoxicity of cadmium-based QDs, which hampers their further practical applications. Later, with the demand for more biocompatible QDs as the signal reporter, cadmium-free quantum dots (CFQDs) were introduced, such as silicon QDs (Si QDs), carbon dots (C-dots), and graphene QDs (GQDs). In this chapter, the kinds of these traditional quantum dots and new emerging quantum dots as well as their preparation and functionalization are discussed in detail. Additionally, as a viable alternative to QDs, the metal nanoclusters also displayed great potentials as luminescent labels for fluorescent biosensing and bioimaging. Thus, the relevant description of metal nanoclusters is also included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekimov AI, Onushchenko AA (1981) Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett 34(6):345–349

    Google Scholar 

  2. Brus L (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    CAS  Google Scholar 

  3. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90(12):2555–2560

    CAS  Google Scholar 

  4. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    CAS  Google Scholar 

  5. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100(2):468–471

    CAS  Google Scholar 

  6. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    CAS  Google Scholar 

  7. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119(30):7019–7029

    CAS  Google Scholar 

  8. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784

    CAS  Google Scholar 

  9. He Y, Lu HT, Sai LM (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J Phys Chem B 110(27):13370–13374

    CAS  Google Scholar 

  10. Zhao D, He Z, Chan WH, Choi MMF (2009) Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-l-cysteine via hydrothermal method. J Phys Chem C 113(4):1293–1300

    CAS  Google Scholar 

  11. He Y, Lu HT, Sai LM, Su YY, Hu M, Fan CH, Huang W, Wang LH (2008) Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater 20(18):3416–3421

    CAS  Google Scholar 

  12. Shen YY, Li LL, Lu Q, Ji J, Fei R, Zhang JR, Abdel-Halim ES, Zhu J-J (2012) Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu(II). Chem Commun 48:2222–2224

    CAS  Google Scholar 

  13. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    CAS  Google Scholar 

  14. Lehmann V, Gosele U (1991) Porous silicon formation: a quantum wire effect. Appl Phys Lett 58:656–658

    Google Scholar 

  15. Fujioka K, Hlruoka M, Sato K, Manabe N, Mlyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects as high concentration. Nanotechnology 19(41):415102

    Google Scholar 

  16. Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18(18):185704–185709

    Google Scholar 

  17. Bruhn B (2012) Fabrication and characterization of single luminescing quantum dots from 1D silicon nanostructures. Doctoral Thesis

    Google Scholar 

  18. Erogbogbo F, Yong K-T, Roy I, Hu R, Law W-C, Zhao WW, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5(1):413–423

    CAS  Google Scholar 

  19. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    CAS  Google Scholar 

  20. Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    CAS  Google Scholar 

  21. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    CAS  Google Scholar 

  22. Li HT, Kang ZH, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    CAS  Google Scholar 

  23. Ming H, Ma Z, Liu Y, Pan KM, Yu H, Wang F, Kang ZH (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531

    CAS  Google Scholar 

  24. Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH (2006) In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans. Nano Lett 6(2):169–174

    CAS  Google Scholar 

  25. Tang LB, Ji RB, Cao XK, Lin JY, Jiang HX, Li XM, Teng KS, Luk CM, Zeng SJ, Hao JH, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110

    CAS  Google Scholar 

  26. Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    CAS  Google Scholar 

  27. Zhu H, Wang XL, Li YL, Wang ZJ, Yang F, Yang XR (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Google Scholar 

  28. Zhou JG, Booker C, Li RY, Sun XL, Sham TK, Ding ZF (2010) Electrochemistry and electrochemiluminescence study of blue luminescent carbon nanocrystals. Chem Phys Lett 493:296–298

    CAS  Google Scholar 

  29. Zhang HC, Huang H, Ming H, Li HT, Zhang LL, Liu Y, Kang ZH (2012) Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem 22:10501–10506

    CAS  Google Scholar 

  30. Wang X, Cao L, Lu FS, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun YP (2009) Photoinduced electron transfers with carbon dots. Chem Commun 25:3774–3776

    Google Scholar 

  31. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Science 320:356–358

    CAS  Google Scholar 

  32. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708

    CAS  Google Scholar 

  33. Yan X, Cui X, Li B, Li LS (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10:1869–1873

    CAS  Google Scholar 

  34. Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36:97–101

    CAS  Google Scholar 

  35. Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, Wu H, Guo S, Zhang J (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6:6592–6599

    CAS  Google Scholar 

  36. Pan DY, Zhang JC, Li Z, Wu MH (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    Google Scholar 

  37. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu J-J (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    CAS  Google Scholar 

  38. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    CAS  Google Scholar 

  39. Liu R, Wu D, Feng X, Muellen K (2011) Bottom–up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133:15221–15223

    CAS  Google Scholar 

  40. Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    CAS  Google Scholar 

  41. Yong KT, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510

    CAS  Google Scholar 

  42. Tamang S, Beaune G, Texier I, Reiss P (2011) Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. ACS Nano 5(12):9392–9402

    CAS  Google Scholar 

  43. Chen YY, Li SJ, Huang LJ, Pan DC (2013) Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Inorg Chem 52:7819–7821

    CAS  Google Scholar 

  44. Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21:2422–2429

    CAS  Google Scholar 

  45. Gu Y-P, Cui R, Zhang Z-L, Xie Z-X, Pang D-W (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134(1):79–82

    CAS  Google Scholar 

  46. Hong GS, Robinson JT, Zhang YJ, Diao S, Antaris AL, Wang QB, Dai HJ (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed 51(39):9818–9821

    CAS  Google Scholar 

  47. Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22(5):185–187

    CAS  Google Scholar 

  48. Huang ZZ, Pu F, Lin YH, Ren JS, Qu XG (2011) Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem Commun 47:3487–3489

    CAS  Google Scholar 

  49. Su YT, Lan GY, Chen WY, Chang HT (2010) Detection of copper ions through recovery of the fluorescence of DNA templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem 82:8566–8572

    CAS  Google Scholar 

  50. Lan GY, Huang CC, Chang HT (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259

    CAS  Google Scholar 

  51. Sharma J, Yeh HC, Yoo H, Werner JH, Martinez JS (2011) Silver nanocluster aptamers: in situ generation of intrinsically fluorescent recognition ligands for protein detection. Chem Commun 47:2294–2296

    CAS  Google Scholar 

  52. Li JJ, Zhong XQ, Zhang HQ, Le XC, Zhu J-J (2012) Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal Chem 84:5170–5174

    CAS  Google Scholar 

  53. Yeh H-C, Sharma J, Shih I-M, Vu DM, Martinez JS, Werner JH (2012) A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J Am Chem Soc 134:11550–11558

    CAS  Google Scholar 

  54. Dong HF, Jin S, Ju HX, Hao KH, Xu L-P, Lu HT, Zhang XJ (2012) Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 84:8670–8674

    CAS  Google Scholar 

  55. Yu JH, Choi S, Dickson RM (2009) Shuttle-based fluorogenic silver-cluster biolabels. Angew Chem Int Ed 48(2):318–320

    CAS  Google Scholar 

  56. Wang JL, Zhang G, Li QW, Jiang H, Liu CY, Amatore C, Wang XM (2013) In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci Rep 3:1157–1162

    CAS  Google Scholar 

  57. Yeh H-C, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110

    CAS  Google Scholar 

  58. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots-characterization, preparation and usage in biological systems. Int J Mol Sci 10(2):656–673

    CAS  Google Scholar 

  59. Algar WR, Krull UJ (2009) Biosensing using nanomaterials. In: Merkoci A (ed) Quantum dots for the development of optical biosensors based on fluorescence, 7th edn. Wiley, New York

    Google Scholar 

  60. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    CAS  Google Scholar 

  61. Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124(9):2049–2055

    CAS  Google Scholar 

  62. Chan WC, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  Google Scholar 

  63. Guo WZ, Li JJ, Wang YA, Peng XG (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 15:3125–3133

    CAS  Google Scholar 

  64. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    CAS  Google Scholar 

  65. Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J, Zhang H (2008) Synthesis and optical properties of type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction. J Phys Chem C 112:8587–8593

    CAS  Google Scholar 

  66. Zeng R, Zhang T, Liu J, Hu S, Wan Q, Liu X, Peng Z, Zou B (2009) Aqueous synthesis of type-II CdTe/CdSe core-shell quantum dots for fluorescent probe labeling tumor cells. Nanotechnology 20:095102

    Google Scholar 

  67. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123

    CAS  Google Scholar 

  68. Liu W, He ZK, Liang JG, Zhu YL, Xu HB, Yang XL (2008) Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles. J Biomed Mater Res Part A 84:A1018–A1025

    Google Scholar 

  69. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    CAS  Google Scholar 

  70. Zhang BB, Cheng J, Li DN, Liu XH, Ma GP, Chang J (2008) A novel method to make hydrophilic quantum dots and its application on biodetection. Mater Sci Eng B-Adv Funct Solid-State Mater 149:87–92

    CAS  Google Scholar 

  71. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo caner targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    CAS  Google Scholar 

  72. Koole R, van Schooneveld MM, Hilhorst J, Donega CD, Hart DC, van Blaaderen A, Vanmaekelbergh D, Meijerink A (2008) On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem Mat 20:2503–2512

    CAS  Google Scholar 

  73. Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  74. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  Google Scholar 

  75. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  Google Scholar 

  76. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    CAS  Google Scholar 

  77. Asha JM, Arunkumar K, Rajalingam R, Mahmmoud Sayed Abd E-S (2011) Photoinduced interaction of MPA-capped CdTe quantum dots with denatured bovine serum albumin. Nanosci Nanotechnol Lett 3(2):125–130

    Google Scholar 

  78. Haque MM, Im HY, Seo JE, Hasan M, Woo K, Kwon OS (2012) Acute toxicity and tissue distribution of CdSe/CdS-MPA quantum dots after repeated intraperitoneal injection to mice. J Appl Toxicol 33(9):940–950

    Google Scholar 

  79. Emamdoust A, Shayesteh SF, Marandi M (2013) Synthesis and characterization of aqueous MPA-capped CdS–ZnS core-shell quantum dots. Pramana J Phys 80(4):713–721

    CAS  Google Scholar 

  80. Gallaqher S, Comby S, Wojdyla M, Gunnlauqsson T, Kelly JM, Gun’ko YK, Clark IP, Greetham GM, Towrie M, Quinn SJ (2013) Efficient quenching of TGA-capped CdTe quantum dot emission by a surface-coordinated europium(III) cyclen complex. Inorg Chem 52(8):4133–4135

    Google Scholar 

  81. Kumar P, Kumar P, Bharadwaj LM, Paul AK, Sharma SC, Kush P, Deep A (2013) Aqueous synthesis of l-cysteine stabilized water-dispersible CdS: Mn quantum dots for biosensing applications. BioNanoSci 3(2):95–101

    Google Scholar 

  82. Zhang YH, Zhang HS, Guo XF, Wang H (2008) l-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination. Microchem J 89(2):142–147

    CAS  Google Scholar 

  83. Zhang H, Sun P, Liu C, Gao H, Xu L, Fang J, Wang M, Liu J, Xu S (2011) l-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Luminescence 26(2):86–92

    CAS  Google Scholar 

  84. Gao M, Rogach AL, Kornowski A (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102:8360–8363

    CAS  Google Scholar 

  85. Zhang H, Zhou Z, Yang B (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107:8–13

    CAS  Google Scholar 

  86. He Y, Sai L-M, Lu H-T, Hu M, Lai W-Y, Fan Q-L, Wang L-H, Huang W (2007) Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem Mater 19:359–365

    CAS  Google Scholar 

  87. He Y, Lu H-T, Sai L-M, Lai W-Y, Fan Q-L, Wang L-H, Huang W (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J Phys Chem B 110:13370–13374

    CAS  Google Scholar 

  88. He Y, Lu H-T, Sai L-M, Su Y-Y, Hu M, Fan C-H, Huang W, Wang L-H (2008) Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater 20(18):3416–3421

    CAS  Google Scholar 

  89. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44(29):4550–4554

    CAS  Google Scholar 

  90. Neiner D, Chiu HW, Kauzlarich SM (2006) Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J Am Chem Soc 128:11016–11017

    CAS  Google Scholar 

  91. Neiner D, Kauzlarich SM (2010) Hydrogen-capped silicon nanoparticles as a potential hydrogen storage material: synthesis, characterization, and hydrogen release. Chem Mater 22:487–493

    CAS  Google Scholar 

  92. Wilcoxon JP, Samara GA (1999) Tailorable, visible light emission from silicon nanocrystals. Appl Phys Lett 74:3164–3166

    CAS  Google Scholar 

  93. Hessel CM, Henderson EJ, Veinot JGG (2007) An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites. J Phys Chem C 111:6956–6961

    CAS  Google Scholar 

  94. Sato S, Swihart MT (2006) Propionic-acid terminated silicon nanoparticles: synthesis and optical characterization. Chem Mater 18:4083–4088

    CAS  Google Scholar 

  95. Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878

    CAS  Google Scholar 

  96. Atkins TM, Thibert A, Larsen DS, Dey S, Browning ND, Kauzlarich SM (2011) Femtosecond ligand/core dynamics of microwave-assisted synthesized silicon quantum dots in aqueous solution. J Am Chem Soc 133(51):20664–20667

    CAS  Google Scholar 

  97. Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17):5944–5945

    CAS  Google Scholar 

  98. Puvvada N, Kumar BNP, Konar S, Kalita H, Mandal M, Pathak A (2012) Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications. Sci Technol Adv Mater 12:045008

    Google Scholar 

  99. Lu J, Yeo PSE, Gan CK, Wu P, Loh KP (2011) Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol 6(4):247–252

    CAS  Google Scholar 

  100. Diez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970

    CAS  Google Scholar 

  101. Richards CI, Choi S, Hsiang J-C, Vosch YAT, Bongiorno A, Tzeng Y-L, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039

    CAS  Google Scholar 

  102. Zhou R, Shi M, Chen X, Wang M, Chen H (2009) Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. Chem Eur J 15(19):4944–4951

    CAS  Google Scholar 

  103. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    CAS  Google Scholar 

  104. Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y (2010) Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 135:1406–1410

    CAS  Google Scholar 

  105. Guevel XL, Daum N, Schneider M (2011) Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 22:275103

    Google Scholar 

  106. Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196

    CAS  Google Scholar 

  107. Yu J, Patel SA, Dickson RM (2007) In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew Chem Int Ed 46(12):2028–2030

    CAS  Google Scholar 

  108. Shang L, Dong SJ, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418

    CAS  Google Scholar 

  109. Choi S, Dickson RM, Yu JH (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41:1867–1891

    CAS  Google Scholar 

  110. Obliosca JM, Liu C, Yeh H-C (2013) Fluorescent silver nanoclusters as DNA probes. Nanoscale 5(18):8443–8461

    Google Scholar 

  111. Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212

    CAS  Google Scholar 

  112. Alivisatos P, Gu W, Larabell C (2005) Quantum dots as fluorescent probes. Ann Rev Biomed Eng 7:55–76

    CAS  Google Scholar 

  113. Xing Y, Rao JH (2008) Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomarkers 4:307–319

    CAS  Google Scholar 

  114. Lakowicz JR, Gryczynski I, Gryczynski Z, Nowaczk K, Murphy CJ (2000) Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding. Anal Biochem 280:128–136

    CAS  Google Scholar 

  115. Mahtab R, Harden HH, Murphy CJ (2000) Temperature- and salt- dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions. J Am Chem Soc 122:14–17

    CAS  Google Scholar 

  116. Gao XH, Yang L, Petros JA, Marshall FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zhu, JJ., Li, JJ. (2013). Quantum Dots. In: Quantum Dots for DNA Biosensing. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44910-9_2

Download citation

Publish with us

Policies and ethics