Skip to main content

Adaptive Regularization Parameters and Norm Selection for Sparse Gradient Based Image Restoration

  • Conference paper
Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

Abstract

The performance of image restoration depends on the choice of image priors and regularization parameters. Recent studies reveal that heavy-tailed sparse gradient distributions of natural images can be modeled by hyper-Laplacian with the norm p∈ [0.5, 1]. However, it is still very challenging to determine the values of the norm and the regularization parameters. In this paper, we proposed a maximum a posterior (MAP) method for adaptive regularization parameters and norm selection. During the procedure of image restoration, by modeling the estimated residual and gradient distribution with Gaussian and hyper-Laplacian, respectively, we suggest a MAP formulation for the joint estimation of the latent image, regularization parameter, and norm. Then, we propose an alternating optimization method to iteratively solving the MAP problem. Experimental results show that, the proposed method obtained satisfactory restoration results for various degraded images with different noise level, and outperformed the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. J. Physica D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  2. Fergus, R., Singh, B., Hertzmann, A., Roweis, S., Freeman, W.T.: Removing Camera Shake from a Single Photograph. Proc. ACM 25(3), 787–794 (2006)

    Google Scholar 

  3. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient Marginal Likelihood Optimization in Blind Deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2657–2664. IEEE (2011)

    Google Scholar 

  4. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and Depth from a Conventional Camera with a Coded Aperture. ACM 26(3), 70 (2007)

    Google Scholar 

  5. Krishnan, D., Fergus, R.: Fast Image Deconvolution Using Hyper-Laplacian Priors. In: NIPS, vol. 22, pp. 1–9 (2009)

    Google Scholar 

  6. Cho, T.S., Joshi, N., Zitnick, C.L., et al.: A Content-Aware Image Prior. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 169–176 (2010)

    Google Scholar 

  7. Cho, T.S., Zitnick, C.L., Joshi, N., et al.: Image Restoration by Matching Gradient Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 683–694 (2012)

    Article  Google Scholar 

  8. Donoho, D.L.: De-Noising by Soft-Thresholding. IEEE Transactions on Information Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stefano, A., White, P.R., Collis, W.B.: Training Methods for Image Noise Level Estimation on Wavelet Components. J. EURASIP on Advances in Signal Processing 16, 2400–2407 (2004)

    Article  Google Scholar 

  10. Galatsanos, N.P., Katsaggelos, A.K.: Methods for Choosing the Regularization Parameter and Estimating the Noise Variance in Image Restoration and their Relation. IEEE Transactions on Image Processing 1(3), 322–336 (1992)

    Article  Google Scholar 

  11. Hansen, P.C.: Analysis of Discrete Ill-posed Problems by Means of the L-curve. SIAM Review 34(4), 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wen, Y.W., Chan, R.H.: Parameter Selection for Total-Variation-Based Image Restoration Using Discrepancy Principle. IEEE Transactions on Image Processing 21(4), 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

  13. Geman, D., Yang, C.: Nonlinear Image Recovery with Half-quadratic Regularization. IEEE Transactions on Image Processing 4(7), 932–946 (1995)

    Article  Google Scholar 

  14. Wang, Y., Yang, et al.: A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, X., Zhang, H., Deng, H., Zuo, W. (2013). Adaptive Regularization Parameters and Norm Selection for Sparse Gradient Based Image Restoration. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics