Skip to main content

A Derivative Augmented Lagrangian Method for Fast Total Variation Based Image Restoration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

Abstract

In this paper, we propose a novel derivative augmented Lagrangian method for fast total variation (TV) based image restoration (TVIR). By introducing a novel variable splitting method, TVIR is approximately reformulated in the derivative space, resulting in a constrained convex optimization problem which is simple to solve. Then, we propose a derivative alternating direction method of multipliers (D-ADMM) to solve the derivative space image restoration problem. Furthermore, we provide a Fourier domain updating algorithm which can save two fast Fourier transform (FFT) operations per iteration. Experimental results show that, compared with the state-of-the-art algorithms, D-ADMM is more efficient and can achieve satisfactory restoration quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, H., Hunt, B.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  2. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  3. Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 3(81), 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  4. Peyré, G., Bougleux, S., Cohen, L.: Non-local Regularization of Inverse Problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 57–68. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  6. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. IP 7(3), 370–375 (1998)

    Google Scholar 

  7. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: CVPR (2008)

    Google Scholar 

  8. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tao, M., Yang, J., He, B.: Alternating direction algorithms for total variation deconvolution in image reconstruction. In: TR0918, Department of Mathematics, Nanjing University (2009)

    Google Scholar 

  10. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Trans. IP 19(9), 2345–2356 (2010)

    MathSciNet  Google Scholar 

  11. Patel, V.M., Maleh, R., Gilbert, A.C., Chellappa, R.: Gradient-Based Image Recovery Methods From Incomplete Fourier Measurements. IEEE Trans. IP 21(1), 94–105 (2012)

    MathSciNet  Google Scholar 

  12. Rostami, M., Michailovich, O., Zhou, W.: Image Deblurring Using Derivative Com-pressed Sensing for Optical Imaging Application. IEEE Trans. IP 21(7), 3139–3149 (2012)

    Google Scholar 

  13. Michailovich, O.V.: An Iterative Shrinkage Approach to Total-Variation Image Restoration. IEEE Trans. IP 20(5), 1281–1299 (2011)

    MathSciNet  Google Scholar 

  14. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM SIGGRAPH 2006, pp. 787–794 (2006)

    Google Scholar 

  15. Dong, W., Zhang, L., Shi, G., Wu, X.: Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. IEEE Trans. IP 20(7), 1838–1857 (2011)

    MathSciNet  Google Scholar 

  16. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)

    MATH  Google Scholar 

  17. Zuo, W., Lin, Z.: A Generalized Accelerated Proximal Gradient Approach for Total-Variation-Based Image Restoration. IEEE Trans. IP 20(10), 2748–2759 (2011)

    MathSciNet  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. IP 13(4), 600–612 (2004)

    Google Scholar 

  19. Lin, Z., Liu, R., Su, Z.: Linearized alternating directional method with adaptive penalty for low-rank representation. In: NIPS (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, D., Zuo, W., Zhang, H., Zhang, D. (2013). A Derivative Augmented Lagrangian Method for Fast Total Variation Based Image Restoration. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics