A Novel Complex-Valued Fuzzy ARTMAP for Sparse Dictionary Learning

  • Chu Kiong Loo
  • Ali Memariani
  • Wei Shiung Liew
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)


This work extends the simplified fuzzy ARTMAP (SFAM) to a complex-valued (CV-SFAM) version which is able to work with spatio-temporal data produced in receptive fields of visual cortex. The CV-SFAM’s ability for incremental learning distinguishes CV-SFAM from other complex-valued neural networks, which provides the ability to preserve learned data while learning new samples. We considered different scales and orientations of Gabor wavelets to form a dictionary. This work takes advantage of a locally competitive algorithm (LCA) which calculates more regular sparse coefficients by combining the interactions of artificial neurons. Finally, we provide an experimental real application for biological implementation of sparse dictionary learning to recognize objects in both aligned and non-aligned images.


complex-valued simplified fuzzy ARTMAP sparse coding dictionary learning genetic optimization body expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, Y.N., Si, Z., Gong, H., Zhu, S.C.: Learning active basis model for object detection and recognition. International Journal of Computer Vision 90(2), 198–235 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kasuba, T.: Simplified Fuzzy ARTMAP. AI Experts 8, 18–25 (1993)Google Scholar
  3. 3.
    Hirose, A.: Complex-Valued Neural Networks Fertilize Electronics. In: Hirose, A. (ed.) Complex-Valued Neural Networks, 2nd edn. SCI, vol. 400, pp. 3–8. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse coding via thresholding and local competition in neural circuits. Neural Computation 20(10), 2526–2563 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aizenberg, I., Aizenberg, N.N., Vandewalle, J.P.: Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer (2000)Google Scholar
  6. 6.
    Noest, A.J.: Discrete-state phasor neural networks. Rapid Communications 38(4), 2196–2199 (1988)Google Scholar
  7. 7.
    Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proceedings of the IEEE 63(4), 719–720 (1975)CrossRefGoogle Scholar
  8. 8.
    Hanna, A.I., Mandic, D.P.: A fully adaptive normalized nonlinear gradient descent algorithm for complex-valued nonlinear adaptive filters. IEEE Transactions on Signal Processing 51(10), 2540–2549 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39(9), 2101–2104 (1991)CrossRefGoogle Scholar
  10. 10.
    Kim, M.S., Guest, C.C.: Modification of backpropagation networks for complex-valued signal processing in frequency domain. In: IEEE/INNS International Joint Conference on Neural Networks, pp. 27–31 (1990)Google Scholar
  11. 11.
    Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Networks 10(8), 1391–1415 (1997)CrossRefGoogle Scholar
  12. 12.
    Su, M.C., Lee, J., Hsieh, K.L.: A new ARTMAP-based neural network for incremental learning. Neurocomputing 69(16), 2284–2300 (2006)CrossRefGoogle Scholar
  13. 13.
    Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks 3(5), 698–713 (1992)CrossRefGoogle Scholar
  14. 14.
    Simpson, P.K.: Fuzzy min-max neural networks. IEEE Transactions on Neural Networks 3(5), 776–786 (1992)CrossRefGoogle Scholar
  15. 15.
    Vakil-Baghmisheh, M.T., Pavesic, N.: A fast simplified fuzzy ARTMAP network. Neural Processing Letters 17(3), 273–316 (2003)CrossRefGoogle Scholar
  16. 16.
    Loo, C.K., Rao, M.V.C.: Accurate and reliable diagnosis and classification using probabilistic ensemble simplified fuzzy ARTMAP. IEEE Transactions on Knowledge and Data Engineering 17(11), 1589–1593 (2005)CrossRefGoogle Scholar
  17. 17.
    Rajasekaran, S., Pai, G.A.V.: Image recognition using Simplified Fuzzy ARTMAP augmented with a moment based feature extractor. International Journal of Pattern Recognition and Artificial Intelligence 14(8), 1081–1095 (2000)CrossRefGoogle Scholar
  18. 18.
    Palaniappan, R., Eswaran, C.: Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance. Applied Soft Computing 9(1), 100–106 (2009)CrossRefGoogle Scholar
  19. 19.
    Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Transactions on Fuzzy Systems 10(2), 171–186 (2002)CrossRefGoogle Scholar
  20. 20.
    Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Transactions on Fuzzy Systems 11(4), 450–461 (2003)CrossRefGoogle Scholar
  21. 21.
    Dick, S.: Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems 13(3), 405–414 (2005)CrossRefGoogle Scholar
  22. 22.
    Zhu, S.C., Guo, C.E., Wang, Y., Xu, Z.: What are textons? International Journal of Computer Vision 62(1-2), 121–143 (2005)CrossRefGoogle Scholar
  23. 23.
    Figueiredo, M.A.T.: Adaptive sparseness for supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1150–1159 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Atkinson, A.P., Dittrich, W.H., Gemmell, A.J., Young, A.W.: Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception 33(6), 717–746 (2004)CrossRefGoogle Scholar
  25. 25.
    de Gelder, B.V.D., Stock, J.: The Bodily Expressive Action Stimulus Test (BEAST). Construction and Validation of a Stimulus Basis for Measuring Perception of Whole Body Expression of Emotions. Frontiers in Psychology 2(181) (2011), doi:10.3389/fpsyg.2011.00181 (accessed May 7th 2013)Google Scholar
  26. 26.
    Loo, C.K., Liew, W.S., Sayeed, M.S.: Genetic Ensemble Biased ARTMAP Method of ECG-Based Emotion Classification. In: Watanabe, T., Watada, J., Takahashi, N., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia: Systems & Services. SIST, vol. 14, pp. 299–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Loo, C.K., Cheong, S.F., Seldon, M.A., Mand, A.A., Muthu, K.S., Liew, W.S., Lim, E.: Genetic-Optimized Classifier Ensemble for Cortisol Salivary Measurement Mapping to Electrocardiogram Features for Stress Evaluation. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 274–284. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chu Kiong Loo
    • 1
  • Ali Memariani
    • 1
  • Wei Shiung Liew
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations