Advertisement

A Neurodynamic Optimization Approach to Robust Pole Assignment for Synthesizing Linear Control Systems Based on a Convex Feasibility Problem Reformulation

  • Xinyi Le
  • Jun Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

A neurodynamic optimization approach to robust pole assignment for synthesizing linear control systems is presented in this paper. The problem is reformulated from a quasi-convex optimization problem into a convex feasibility problem with the spectral condition number as the robustness measure. Two coupled globally convergent recurrent neural networks are applied for solving the reformulated problem in real time. Robust parametric configuration and exact pole assignment of feedback control systems can be achieved. Simulation results of the proposed neurodynamic approach are reported to demonstrate its effectiveness.

Keywords

Robust pole assignment recurrent neural networks state feedback control global convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byers, R., Nash, S.G.: Approaches to robust pole assignment. International J. Control 49(1), 97–117 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chu, E.K.: Pole assignment via the schur form. Systems & Control Letters 56(4), 303–314 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ho, D.W., Lam, J., Xu, J., Tam, H.K.: Neural computation for robust approximate pole assignment. Neurocomputing 25(1), 191–211 (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52(3), 141–152 (1985)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hu, S., Wang, J.: A gradient flow approach to on-line robust pole assignment for synthesizing output feedback control systems. Automatica 38(11), 1959–1968 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hu, X., Wang, J.: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans. Neural Networks 17(6), 1487–1499 (2006)CrossRefGoogle Scholar
  7. 7.
    Hu, X., Wang, J.: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans. Systems, Man, and Cybernetics, Part B 37(5), 1414–1421 (2007)CrossRefGoogle Scholar
  8. 8.
    Jiang, D., Wang, J.: Augmented gradient flows for on-line robust pole assignment via state and output feedback. Automatica 38(2), 279–286 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kautsky, J., Nichols, N.K., Van Dooren, P.: Robust pole assignment in linear state feedback. International J. Control 41(5), 1129–1155 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE Trans. Circuits and Systems 35(5), 554–562 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lam, J., Van, W.Y.: A gradient flow approach to the robust pole-placement problem. International J. Robust and Nonlinear Control 5(3), 175–185 (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Le, X., Wang, J.: Neurodynamic optimization approaches to robust pole assignment based on alternative robustness measures. In: Proc. Interntional Joint Conference on Neural Networks (2013)Google Scholar
  13. 13.
    Le, X., Wang, J.: Robust pole assignment for synthesizing feedback control systems using recurrent neural networks. IEEE Trans. Neural Networks and Learning Systems (in press, 2013)Google Scholar
  14. 14.
    Liu, Q., Wang, J.: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming. IEEE Trans. Neural Networks 19(4), 558–570 (2008)CrossRefGoogle Scholar
  15. 15.
    Liu, Q., Wang, J.: A one-layer recurrent neural network for constrained nonsmooth optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(5), 1323–1333 (2011)CrossRefGoogle Scholar
  16. 16.
    Oja, E.: Neural networks, principal components, and subspaces. Int. J. Neural Systems 1(1), 61–68 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rami, A.M., El Faiz, S., Benzaouia, A., Tadeo, F.: Robust exact pole placement via an lmi-based algorithm. IEEE Trans. Automatic Control 54(2), 394–398 (2009)CrossRefGoogle Scholar
  18. 18.
    Soh, Y.C., Evans, R.J., Petersen, I.R., Betz, R.E.: Robust pole assignment. Automatica 23(5), 601–610 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tang, Y., Li, J.: Notes on recurrent neural network model for computing largest and smallest generalized eigenvalue. Neurocomputing 73(4), 1006–1012 (2010)CrossRefGoogle Scholar
  20. 20.
    Tits, A.L., Yang, Y.: Globally convergent algorithms for robust pole assignment by state feedback. IEEE Trans. Automatic Control 41(10), 1432–1452 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xia, Y., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Networks 9(6), 1331–1343 (1998)CrossRefGoogle Scholar
  22. 22.
    Xia, Y., Wang, J.: A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Networks 15(2), 318–328 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Xia, Y., Wang, J.: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circuits and Systems I 51(7), 1385–1394 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xia, Y., Wang, J.: A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans. Neural Networks 16(2), 379–386 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xinyi Le
    • 1
  • Jun Wang
    • 1
  1. 1.Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations