Skip to main content

SVITE: A Spike-Based VITE Neuro-Inspired Robot Controller

  • Conference paper
Neural Information Processing (ICONIP 2013)

Abstract

This paper presents an implementation of a neuro-inspired algorithm called VITE (Vector Integration To End Point) in FPGA in the spikes domain. VITE aims to generate a non-planned trajectory for reaching tasks in robots. The algorithm has been adapted to work completely in the spike domain under Simulink simulations. The FPGA implementation consists in 4 VITE in parallel for controlling a 4-degree-of-freedom stereo-vision robot. This work represents the main layer of a complex spike-based architecture for robot neuro-inspired reaching tasks in FPGAs. It has been implemented in two Xilinx FPGA families: Virtex-5 and Spartan-6. Resources consumption comparative between both devices is presented. Results obtained for Spartan device could allow controlling complex robotic structures with up to 96 degrees of freedom per FPGA, providing, in parallel, high speed connectivity with other neuromorphic systems sending movement references. An exponential and gamma distribution test over the inter spike interval has been performed to proof the approach to the neural code proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008)

    Article  Google Scholar 

  2. Hafliger, P.: Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans. Neural Netw. 18, 551–572 (2007)

    Article  Google Scholar 

  3. Linares-Barranco, A., Paz-Vicente, et al.: AER neuro-inspired interface to anthropomorphic robotic hand. In: Proceedings of IJCNN, Vancouver, pp. 1497–1504 (2006)

    Google Scholar 

  4. Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., Delbruck, T., Lichtensteiner, P.: Using FPGA for visuo-motor control with a silicon retina and a humanoid robot. In: Proceedings of ISCAS 2007, pp. 1192–1195. IEEE Press, New Orleans (2007)

    Google Scholar 

  5. Pearson, M.J., Pipe, A.G., Mitchinson, B., Gurney, K., et al.: Implementing Spiking Neural Networks for Real-Time Signal-Processing and Control Applications: A Model-Validated FPGA Approach. IEEE Trans. Neural Networks 18, 1472–1487 (2007)

    Article  Google Scholar 

  6. Xiuqing, W., Zeng-Guang, H., Anmin, Z., Min, T., Long, C.: A behavior controller based on spiking neural networks for mobile robots. Neurocomputing 71, 655–666 (2008)

    Article  Google Scholar 

  7. Rieke, F., Warland, D., Steveninck, R., Bialek, W.: Spikes Exploring the neural code. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Dayan, P., Abbot, L.: Theoretical Neuroscience. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Linares-Barranco, A., Jimenez-Moreno, G., Linares-Barranco, B., Civit-Ballcels, A.: On algorithmic rate-coded AER generation. IEEE Transactions on Neural Networks 17(3), 771–788 (2006)

    Article  Google Scholar 

  10. Sivilotti, M.: Wiring Considerations in Analog VLSI Systems with Application to Field- Programmable Networks, Ph.D. Thesis, California Institute of Technology, Pasadena CA (1991)

    Google Scholar 

  11. Bullock, D., Grossberg, S.: The VITE model: A neural command circuit for generating arm and articulator trajectories. In: Kelso, J.A.S., Mandell, A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 305–326. World Scientific Publishers, Singapore (1988)

    Google Scholar 

  12. Jimenez-Fernandez, A., Jimenez-Moreno, G., et al.: A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs. Sensors 12(4), 3831–3856 (2012)

    Article  Google Scholar 

  13. Perez-Peña, F., Morgado-Estevez, A., Linares-Barranco, A., et al.: Towards AER VITE: building spike gate signal. In: 19th ICECS, Seville, pp. 881–884 (2012)

    Google Scholar 

  14. Berner, R., Delbruck, T., Civit-Balcells, A., et al.: A 5 Meps $100 USB2.0 Address-Event Monitor-Sequencer Interface. In: ISCAS, New Orleans, LA, pp. 2451–2454 (2007)

    Google Scholar 

  15. Linares-Barranco, A., Osterb, M., Cascado, D., Jiménez, G., et al.: Inter-spike-intervals analysis of AER Poisson-like generator hardware. Neurocomputing 70, 2692–2700 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perez-Peña, F., Morgado-Estevez, A., Linares-Barranco, A., Dominguez-Morales, M.J., Jimenez-Fernandez, A. (2013). SVITE: A Spike-Based VITE Neuro-Inspired Robot Controller. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42054-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42053-5

  • Online ISBN: 978-3-642-42054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics