Advertisement

RBF-Based Neuro-Adaptive Controller for a Knee Joint Rehabilitation Orthosis

  • Said Talbi
  • Boubaker Daachi
  • Karim Djouani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

In this paper, we address a knee joint orthosis control for rehabilitation purposes. Only the structure of the system’s dynamic model is supposed to be known. Inertia of the knee-shank-orthosis system is identified on-line using an adaptive term. In order to approximate all of the other dynamics (viscous and solid frictions, gravity related torque, etc.), we use an RBF Neural Network (RBFNN) with no off-line prior training. Adaptation laws of the neural parameters and the inertia adaptive term are derived from the closed loop system’s overall stability study using Lyapunov’s theory. The study considers three cases: wearer being completely inactive or applying either a resistive or an assistive torque. Simulation results and conducted analysis show the effectiveness of the proposed approach.

Keywords

RBFNN neuro-adaptive control rehabilitation knee joint orthosis Lyapunov theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rifai, H., Mohammed, S., Daachi, B., Amirat, Y.: Adaptive control of a human-driven knee joint orthosis. In: IEEE International Conference on Robotics and Automation, pp. 2486–2491. St. Paul, USA (2012)Google Scholar
  2. 2.
    Memarian, H., Balasundram, S.K.: Comparison between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed. Journal of Water Resource and Protection 4, 870–876 (2012)CrossRefGoogle Scholar
  3. 3.
    Yumei, M., Lijun, L., Dong, N.: A Note on Approximation Problems of Neural Network. International Mathematical Forum 5(41), 2037–2041 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Achili, B., Daachi, B., Amirat, Y., Ali-Cherif, A.: A robust adaptive control of a parallel robot. International Journal of Control 83(10), 2107–2119 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Achili, B., Daachi, B., Ali-Cherif, A., Amirat, Y.: Robust neural adaptive force controller for a C5 parallel robot. In: IEEE International Conference on Advanced Robotics, Munich, Germany, pp. 1–6 (June 2009)Google Scholar
  6. 6.
    Martins, N.A., Bertol, D.W., Lombardi, W.C., De Pieri, E.R., de, E., Neto, B.C.: Neurocontrollers for Trajectory Tracking Problem of a Nonholonomic Mobile Robot. In: Proceedings of the 17th World Congress. The International Federation of Automatic Control, July 6-11. Seoul, Korea (2008)Google Scholar
  7. 7.
    Weinberg, B., Nikitczuk, J., Patel, S., Patritti, B., Mavroidis, C., Bonato, P.: Design, Control and Human Testing of an Active Knee Rehabilitation Orthotic Device. In: IEEE International Conference on Robotics and Automation, Roma, Italy, April 10-14 (2007)Google Scholar
  8. 8.
    Suzuki, K., Mito, G., Kawamoto, H., Hasegawa, Y., Sankai, Y.: Intentionbased walking support for paraplegia patients with robot suit HAL. Advanced Robotics 21(12), 1441–1469 (2007)Google Scholar
  9. 9.
    Banala, S.K., Kulpe, A., Agrawal, S.K.: A Powered Leg Orthosis for Gait Rehabilitation of Motor-Impaired Patients. In: IEEE International Conference on Robotics and Automation, Roma, Italy, April 10-14 (2007)Google Scholar
  10. 10.
    Fleischer, C., Wege, A., Kondak, K., Hommel, G.: Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl) 51(5-6), 314–319 (2006)CrossRefGoogle Scholar
  11. 11.
    Blaya, J.A., Herr, H.: Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(1), 24–31 (2004)CrossRefGoogle Scholar
  12. 12.
    Gong, J.Q., Yao, B.: Neural network adaptive robust control of nonlinear systems in semi-strict feedback form. Automatica 37, 1149–1160 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gong, J.Q., Yao, B.: Neural Network-based Adaptive Robust Control of a Class of Nonlinear Systems in Normal Form. In: Proceedings of the American Control Conference Chicago, Illinois (June 2000)Google Scholar
  14. 14.
    Benallegue, A., Meddah, D.Y., Daachi, B.: Neural network identification and control of a class of non linear systems. In: Proceedings of the 16th IMACS World Congress, Lausanne, Switzerland (2000)Google Scholar
  15. 15.
    Khalil, W., Dombre, E.: Modélisation, identification et commande des robots. Hermes Science Publication, Paris (1999)zbMATHGoogle Scholar
  16. 16.
    Meddah, D.Y., Benallegue, A.: A Stable Neuro-Adaptive Controller for Rigid Robot Manipulators. Journal of Intelligent and Robotic Systems 20, 181–193 (1997)CrossRefGoogle Scholar
  17. 17.
    Swevers, J., Ganseman, C., Bilgin, D., De-Schutter, J., Van Brussel, H.: Optimal Robot Excitation and Identification. IEEE Transactions on Robotics and Automation 13(5), 730–740 (1997)CrossRefGoogle Scholar
  18. 18.
    Stein, R.B., Zehr, E.P., Lebiedowska, M.K., Popovic, D.B., Scheiner, A., Chizeck, H.J.: Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Transactions on Rehabilitation Engineering 4(3), 201–211 (1996)CrossRefGoogle Scholar
  19. 19.
    Haddock, J., Kristzen, T., Terjki, J.: Comparison theorems and convergence properties for functional differential equations with infinite delay. Acta Sci. Math. 52, 399–414 (1988)Google Scholar
  20. 20.
    Zatsiorsky, V., Seluyanov, V.: The mass and inertia characteristics of the main segments of the human body. Biomechanics VIII-B, 1152–1159 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Said Talbi
    • 1
  • Boubaker Daachi
    • 1
  • Karim Djouani
    • 1
  1. 1.Laboratoire Images, Signaux et Systèmes Intelligents (LISSI, E. A.3956)University of Paris-Est CréteilCréteilFrance

Personalised recommendations