Computational Intelligence Methods Based Design of Closed-Loop System

  • Juri Belikov
  • Eduard Petlenkov
  • Kristina Vassiljeva
  • Sven Nõmm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)


The paper describes a unified algorithm for both parametric and structural identification. The approach combines three typical techniques such as neural networks, statistics and genetic algorithm. A specific structure of the neural network is used that allows to design a controller directly from parameters of the identified model. The control strategy based on reference model is discussed. Finally, the proposed solution is illustrated by numerical example.


Computational intelligence nonlinear systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, S.R., Kadirkamanathan, V.: Modelling and identification of nonlinear deterministic systems in delta-domain. Automatica 43, 1859–1868 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berana, J., Ghoshb, S., Schella, D.: On least squares estimation for long-memory lattice processes. Journal of Multivariate Analysis 100(10), 2178–2194 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Billings, S.A., Fadzil, M.B.: The practical identification of systems with nonlinearities. In: The 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation, York, UK, pp. 155–160 (July 1985)Google Scholar
  4. 4.
    Caravani, P., Watson, M.L.: Recursive least-square time domain identification of structural parameters. Journal of Applied Mechanics 44(1), 135–140 (1977)CrossRefGoogle Scholar
  5. 5.
    Gao, H., Meng, X., Chen, T.: A parameter-dependent approach to robust H  ∞  filtering for time-delay systems. IEEE Transactions on automatic control 53(10), 2420–2425 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hu, X.J., Lagakos, S.W., Lockhart, R.A.: Generalized least squares estimation of the mean function of a counting process based on panel counts. Statistica Sinica 19, 561–580 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kotta, Ü., Zinober, A.S.I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica 37(11), 1771–1778 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear systems Part I: deterministic non-linear systems. International Journal of Control 41(2), 303–328 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Leva, A., Piroddi, L.: A neural network-based technique for structural identification of SISO systems 1, 135–138 (1994)Google Scholar
  10. 10.
    Nõmm, S., Kotta, Ü.: Comparison of neural networks-based ANARX and NARX models by application of correlation tests. In: International Joint Conference on Neural Networks, San Jose, CA, USA, pp. 2113–2118 (July-August 2011)Google Scholar
  11. 11.
    Petlenkov, E.: NN-ANARX structure based dynamic output feedback linearization for control of nonlinear MIMO systems. In: The 15th Mediterranean Conference on Control and Automation, Athena, Greece, pp. 1–6 (June 2007)Google Scholar
  12. 12.
    Petlenkov, E.: Model reference control of nonlinear systems by dynamic output feedback linearization of neural network based ANARX models. In: The 10th International Conference on Control Automation Robotics and Vision, Hanoi, Vietnam, pp. 1119–1123 (December 2008)Google Scholar
  13. 13.
    Pothin, R., Kotta, Ü., Moog, C.H.: Output feedback linearization of nonlinear discrete time systems. In: The IFAC Conference on Control Systems Design, Bratislava, Slovak Republic, pp. 181–186 (2000)Google Scholar
  14. 14.
    Shinozuka, M., Yun, C.B., Imai, H.: Identification of linear structural dynamic systems. Journal of the Engineering Mechanics Division 108(6), 1371–1390 (1982)Google Scholar
  15. 15.
    Sivanandam, S.N., Deepa, S.: Introduction to Genetic Algorithms. Springer, Berlin (2008)zbMATHGoogle Scholar
  16. 16.
    Vassiljeva, K., Petlenkov, E., Nomm, S.: Evolutionary design of the closed loop control on the basis of NN-ANARX model using genetic algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I. LNCS, vol. 7663, pp. 592–599. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Whitley, D.: Genetic algorithms and neural networks. In: Genetic Algorithms in Engineering and Computer Science, pp. 191–201. John Wiley & Sons Ltd. (1995)Google Scholar
  18. 18.
    Zhang, L.F., Zhu, Q.M., Longden, A.: A correlation-test-based validation procedure for identified neural networks. IEEE Transactions on Neural Networks 20(1), 1–13 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhu, Q.M., Zhang, L.F., Longden, A.: Development of omni-directional correlation functions for nonlinear model validation. Automatica 43, 1519–1531 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juri Belikov
    • 1
  • Eduard Petlenkov
    • 2
  • Kristina Vassiljeva
    • 2
  • Sven Nõmm
    • 1
  1. 1.Institute of CyberneticsTallinn University of TechnologyTallinn
  2. 2.Department of Computer ControlTallinn University of TechnologyTallinnEstonia

Personalised recommendations