Advertisement

Biomarker Development on Alcohol Addiction Using EEG

  • Pham Lam Vuong
  • Likun Xia
  • Aamir Saeed Malik
  • Rusdi Bin Abd Rashid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

Alcohol addiction is harmful to society, economy and personal health. Alcohol addiction treatments intend to help addicted individuals reduce and stop compulsive alcohol use. Using biomarker, the clinicians could determine if drugs are having a desirable effect much earlier and given in correct dose for treatment. This paper will provide an up-to-date review of the state of the art in biomarker development for alcohol addiction treatment using electroencephalography (EEG) including EEG methodologies and their applications.

Keywords

Biomarker alcohol addiction EEG predict 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization, Global status report on alcohol and health. World Health Organization, Geneva, Switzerland (2011)Google Scholar
  2. 2.
    Winterer, G., Klöppel, B., Heinz, A., Ziller, M., Dufeu, P., Schmidt, L.G., Herrmann, W.M.: Quantitative EEG (QEEG) predicts relapse in patients with chronic alcoholism and points to a frontally pronounced cerebral disturbance. Psychiatry Research 78(1-2), 101–113 (1998)CrossRefGoogle Scholar
  3. 3.
    Bauer, L.O.: Predicting relapse to alcohol and drug abuse via quantitative electro encephalography. Neuropsychopharmacology 25(3), 332–340 (2001)CrossRefGoogle Scholar
  4. 4.
    Saletu-Zyhlarz, G.M., Arnold, O., Anderer, P., Oberndorfer, S., Walter, H., Lesch, O.M., Böning, J., Saletu, B.: Differences in Brain Function Between Relapsing and Abstaining Alcohol-Dependent Patients, Evaluated by Eeg Mapping. Alcohol and Alcoholism 39(3), 233–240 (2004)CrossRefGoogle Scholar
  5. 5.
    Rangaswamy, M., Porjesz, B., Chorlian, D.B., Choi, K., Jones, K.A., Wang, K., Rohrbaugh, J., O’Connor, S., Kuperman, S., Reich, T., Begleiter, H.: Theta Power in the EEG of Alcoholics. Alcoholism: Clinical and Experimental Research 27(4), 607–615 (2003)CrossRefGoogle Scholar
  6. 6.
    de Bruin, E.A., Bijl, S., Stam, C.J., Böcker, K.B., Leon Kenemans, J., Verbaten, M.N.: Abnormal EEG synchronisation in heavily drinking students. Clinical Neurophysiology 115(9), 2048–2055 (2004)CrossRefGoogle Scholar
  7. 7.
    Coutin-Churchman, P., Moreno, R., Añez, Y., Vergara, F.: Clinical correlates of quantitative EEG alterations in alcoholic patients. Clinical Neurophysiology 117(4), 740–751 (2006)CrossRefGoogle Scholar
  8. 8.
    Ehlers, C.L., Phillips, E., Schuckit, M.A.: EEG alpha variants and alpha power in Hispanic American and white non-Hispanic American young adults with a family history of alcohol dependence. Alcohol 33(2), 99–106 (2004)Google Scholar
  9. 9.
    Ehlers, C.L., Phillips, E.: Association of EEG alpha variants and alpha power with alcohol dependence in Mexican American young adults. Alcohol 41(1), 13–20 (2007)CrossRefGoogle Scholar
  10. 10.
    Rangaswamy, M., Porjesz, B., Chorlian, D.B., Wang, K., Jones, K.A., Bauer, L.O., Rohrbaugh, J., O’Connor, S.J., Kuperman, S., Reich, T., Begleiter, H.: Beta power in the EEG of alcoholics. Biological Psychiatry 52(8), 831–842 (2002)CrossRefGoogle Scholar
  11. 11.
    Rangaswamy, M., Porjesz, B., Chorlian, D.B., Wang, K., Jones, K.A., Kuperman, S., Rohrbaugh, J., O’Connor, S.J., Bauer, L.O., Reich, T., Begleiter, H.: Resting EEG in offspring of male alcoholics: beta frequencies. International Journal of Psychophysiology 51(3), 239–251 (2004)CrossRefGoogle Scholar
  12. 12.
    Costa, L., Bauer, L., Kuperman, S., Porjesz, B., O’Connor, S., Hesselbrock, V., Rohrbaugh, J., Begleiter, H.: Frontal P300 decrements, alcohol dependence, and antisocial personality disorder. Biological Psychiatry 47(12), 1064–1071 (2000)CrossRefGoogle Scholar
  13. 13.
    Marinkovic, K., Halgren, E., Maltzman, I.: Arousal-related P3a to novel auditory stimuli is abolished by a moderately low alcohol dose. Alcohol and Alcoholism 36(6), 529–539 (2001)CrossRefGoogle Scholar
  14. 14.
    Maurage, P., Campanella, S., Philippot, P., de Timary, P., Constant, E., Gauthier, S., Miccichè, M.-L., Kornreich, C., Hanak, C., Noel, X., Verbanck, P.: Alcoholism leads to early perceptive alterations, independently of comorbid depressed state: An ERP study. Neurophysiologie Clinique/Clinical Neurophysiology 38(2), 83–97 (2008)CrossRefGoogle Scholar
  15. 15.
    Kamarajan, C., Porjesz, B., Jones, K.A., Choi, K., Chorlian, D.B., Padmanabhapillai, A., Rangaswamy, M., Stimus, A.T., Begleiter, H.: Alcoholism is a disinhibitory disorder: neurophysiological evidence from a Go/No-Go task. Biological Psychology 69(3), 353–373 (2005)CrossRefGoogle Scholar
  16. 16.
    Suresh, S., Porjesz, B., Chorlian, D.B., Choi, K., Jones, K.A., Wang, K., Stimus, A., Begleiter, H.: Auditory P3 in Female Alcoholics. Alcoholism: Clinical and Experimental Research 27(7), 1064–1074 (2003)CrossRefGoogle Scholar
  17. 17.
    Porjesz, B., Begleiter, H.: Human brain electrophysiology and alcoholism, pp. 139–182. Plenum Press (1985)Google Scholar
  18. 18.
    Wan, L., Baldridge, R.M., Colby, A.M., Stanford, M.S.: Association of P3 amplitude to treatment completion in substance dependent individuals. Psychiatry Research 177(1-2), 223–227 (2010)CrossRefGoogle Scholar
  19. 19.
    Anderson, N.E., Baldridge, R.M., Stanford, M.S.: P3a amplitude predicts successful treatment program completion in substance-dependent individuals. Subst Use Misuse 46(5), 669–677 (2011)CrossRefGoogle Scholar
  20. 20.
    Marco, J., Fuentemilla, L., Grau, C.: Auditory sensory gating deficit in abstinent chronic alcoholics. Neuroscience Letters 375(3), 174–177 (2005)CrossRefGoogle Scholar
  21. 21.
    Curtin, J.J., Fairchild, B.A.: Alcohol and cognitive control: Implications for regulation of behavior during response conflict. Journal of Abnormal Psychology 112(3), 424–436 (2003)CrossRefGoogle Scholar
  22. 22.
    Krause, C.M., Aromäki, A., Sillanmäki, L., Åström, T., Alanko, K., Salonen, E., Peltola, O.: Alcohol-induced alterations in ERD/ERS during an auditory memory task. Alcohol 26(3), 145–153 (2002)CrossRefGoogle Scholar
  23. 23.
    Kamarajan, C., Porjesz, B., Jones, K.A., Choi, K., Chorlian, D.B., Padmanabhapillai, A., Rangaswamy, M., Stimus, A.T., Begleiter, H.: The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. International Journal of Psychophysiology 51(2), 155–180 (2004)CrossRefGoogle Scholar
  24. 24.
    Kamarajan, C., Porjesz, B., Jones, K., Chorlian, D., Padmanabhapillai, A., Rangaswamy, M., Stimus, A., Begleiter, H.: Event-Related Oscillations in Offspring of Alcoholics: Neurocognitive Disinhibition as a Risk for Alcoholism. Biological Psychiatry 59(7), 625–634 (2006)CrossRefGoogle Scholar
  25. 25.
    Andrew, C., Fein, G.: Induced theta oscillations as biomarkers for alcoholism. Clinical Neurophysiology 121(3), 350–358 (2010)CrossRefGoogle Scholar
  26. 26.
    Rangaswamy, M., Porjesz, B.: From event-related potential to oscillations: genetic diathesis in brain (dys) function and alcohol dependence. Alcohol Research & Health (September 2008)Google Scholar
  27. 27.
    Jones, K.A., Porjesz, B., Chorlian, D., Rangaswamy, M., Kamarajan, C., Padmanabhapillai, A., Stimus, A., Begleiter, H.: S-transform time-frequency analysis of P300 reveals deficits in individuals diagnosed with alcoholism. Clinical Neurophysiology 117(10), 2128–2143 (2006)CrossRefGoogle Scholar
  28. 28.
    Gilmore, C.S., Fein, G.: Theta event-related synchronization is a biomarker for a morbid effect of alcoholism on the brain that partially resolve with extended abstinence. Brain and Behavior 2(6), 796–805 (2012)CrossRefGoogle Scholar
  29. 29.
    Rangaswamy, M., Jones, K.A., Porjesz, B., Chorlian, D.B., Padmanabhapillai, A., Kamarajan, C., Kuperman, S., Rohrbaugh, J., O’Connor, S.J., Bauer, L.O., Schuckit, M.A., Begleiter, H.: Delta and theta oscillations as risk markers in adolescent offspring of alcoholics. International Journal of Psychophysiology 63(1), 3–15 (2007)CrossRefGoogle Scholar
  30. 30.
    Padmanabhapillai, A., Porjesz, B., Ranganathan, M., Jones, K.A., Chorlian, D.B., Tang, Y., Kamarajan, C., Rangaswamy, M., Stimus, A., Begleiter, H.: Suppression of early evoked gamma band response in male alcoholics during a visual oddball task. International Journal of Psychophysiology 60(1), 15–26 (2006)CrossRefGoogle Scholar
  31. 31.
    Sharmilakanna, Ramaswamy, P.: Neural Network Classification of Alcohol Abusers Using Power in Gamma Band Frequency of VEP Signals. Multimedia Cyberscape Journal 1 (2003)Google Scholar
  32. 32.
    Ramaswamy, P.: Screening for Chronic Alcoholic Subjects Using Multiple Gamma Band EEG: A Pilot Study. JCS&T 7(2), 182–185 (2007)MathSciNetGoogle Scholar
  33. 33.
    Krause, C.M., Sillanmäki, L., Koivisto, M., Saarela, C., Häggqvist, A., Laine, M., Hämäläinen, H.: The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology 111(11), 2071–2078 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pham Lam Vuong
    • 1
  • Likun Xia
    • 1
  • Aamir Saeed Malik
    • 1
  • Rusdi Bin Abd Rashid
    • 2
  1. 1.Center for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONASMalaysia
  2. 2.Department of Psychological Medicine, Faculty of MedicineUniversity of MalayaMalaysia

Personalised recommendations