Advertisement

Spectral Power Estimation for Unevenly Spaced Motor Imagery Data

  • Junhua Li
  • Zbigniew Struzik
  • Liqing Zhang
  • Andrzej Cichocki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

The human brain can send a command to external devices or communicate with the outside environment by the means of a brain computer interface (BCI) system. The effectiveness depends on how precisely specific brain activities can be identified from EEG. Noise is usually mixed into the EEG signal, and cannot be separated or filtered out in some cases. In a practical BCI system, the whole segment of EEG is discarded when a portion of that segment is contaminated by extreme noise or artifacts. This leads to the weakness that the BCI system cannot output decoding results during the period of that discarded segment. In order to solve this problem, we employed a Lomb-Scargle periodogram to estimate the spectral power based on an unevenly spaced segment, a portion of which has been removed due to noise contamination. According to the classification results of motor imagery data, the accuracy is not dramatically decreased along with increased proportion of data removal.

Keywords

Spectral Power Estimation Brain Computer Interface Motor Imagery Unevenly Spaced Data Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, J., Liu, Y., Lu, Z., Zhang, L.: A Competitive Brain Computer Interface: Multi-person CarRacing System. In: 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, July 3-7, pp. 2200–2203 (2013)Google Scholar
  2. 2.
    Muller, K.R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine Learning for Real-time Single Trial EEG Analysis: from Brain-computer Interfacing to Mental State Monitoring. J. Neurosci. Methods. 167(1), 82–90 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, J., Liang, J., Zhao, Q., Li, J., Hong, K., Zhang, L.: Design of Assistive Wheelchair System Directly Steered by Human Thoughts. Int. J. Neural Syst. 23(3), 1350013 (2013)CrossRefGoogle Scholar
  4. 4.
    Pfurtscheller, G., Muller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: ‘Thought’-Control of Functional Electrical Stimulation to Restore Hand Grasp in A Patient withTetraplegia. Neurosci. Lett. 351(1), 33–36 (2003)CrossRefGoogle Scholar
  5. 5.
    Pfurtscheller, G., Guger, C., Muller, G., Krausz, G., Neuper, C.: Brain Oscillations Control Hand Orthosis in A Tetraplegic. Neurosci. Lett. 292(3), 211–214 (2000)CrossRefGoogle Scholar
  6. 6.
    Palaniappan, R.: Utilizing Gamma Band to Improve Mental Task Based Brain-computer Interface Design. IEEE Trans. Neural Syst. Rehabil. Eng. 14(3), 299–303 (2006)CrossRefGoogle Scholar
  7. 7.
    Li, J., Zhang, L.: Active Training Paradigm for Motor Imagery BCI. Exp. Brain Res. 219(2), 245–254 (2012)CrossRefGoogle Scholar
  8. 8.
    Lomb, N.R.: Least-squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 39(2), 447–462 (1976)CrossRefGoogle Scholar
  9. 9.
    Stoica, P., Li, J., He, H.: Spectral Analysis of NonuniformlySampled Data: ANew Approach Versus the Periodogram. IEEE Trans. Signal Process. 57(3), 843–858 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support Vector Machines. IEEE Intell. Syst. 13(4), 18–28 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Junhua Li
    • 1
    • 2
  • Zbigniew Struzik
    • 2
  • Liqing Zhang
    • 1
  • Andrzej Cichocki
    • 2
  1. 1.MOE-Microsoft Key Laboratory for Intelligent Information and Intelligent SystemsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Laboratory for Advanced Brain Signal Processing, Brain Science InstituteRIKENSaitamaJapan

Personalised recommendations