Advertisement

Amygdala Activation Is Associated with Sense of Presence during Viewing 3D-surround Cinematography

  • Akitoshi Ogawa
  • Cecile Bordier
  • Emiliano Macaluso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

Cinematographic stimuli have been previously used to probe functional mapping of naturalistic stimuli, leaving whether such stimuli are also associated with a subjective increase of the sense of presence (SoP). In this functional magnetic resonance imaging, we investigated whether the SoP evaluation of 3D-surround cinematographic stimuli was associated with any change of activity within emotion-related areas, in particular the amygdala. The subjects evaluated several scenes of a commercial 3D movie presented in four different conditions: 3D vision with surround sounds (3D-Surround), 2DSurround, 3D-Mono, and 2D-Mono. The behavioral results showed that the stereoscopic viewing, but not surround sound, increased SoP scores. The wholebrain imaging results showed that the middle occipital gyrus was involved in evaluating the SoP. The planned anatomical ROI analysis showed that also activity in the right amygdala increased with increasing SoP scores. The results suggest that 3D vision enhances the SoP and this is associated with activation of both visual cortex and emotion-related brain region.

Keywords

stereoscopy surround sounds sense of presence functional MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartels, A., Zeki, S.: Functional brain mapping during free viewing of natural scenes. Hum. Brain Mapp. 21, 75–85 (2004)CrossRefGoogle Scholar
  2. 2.
    Bartels, A., Zeki, S., Logothetis, N.K.: Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb. Cortex 18, 705–717 (2008)CrossRefGoogle Scholar
  3. 3.
    Bordier, C., Puja, F., Macaluso, E.: Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging. Neuroimage 67, 213–226 (2013)CrossRefGoogle Scholar
  4. 4.
    Rust, N.C., Movshon, J.A.: In praise of artifice. Nat. Neurosci. 8, 1647–1650 (2005)CrossRefGoogle Scholar
  5. 5.
    Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005)CrossRefGoogle Scholar
  6. 6.
    Regenbrecht, H., Schubert, T., Friedmann, F.: Measuring the sense of presence and its relations to fear of heights is virtual environments. Int J. Hum.-Comput. Int. 10, 233–249 (1998)CrossRefGoogle Scholar
  7. 7.
    Baumgartner, T., Speck, D., Wettstein, D., Masnari, O., Beeli, G., Jäncke, L.: Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children. Front Hum. Neurosci. 2, 8 (2008)Google Scholar
  8. 8.
    Adolphs, R., Tranel, D., Damasio, H., Damasio, A.R.: Fear and the human amygdala. J. Neurosci. 15, 5879–5891 (1995)Google Scholar
  9. 9.
    Lanteaume, L., Khalfa, S., Régis, J., Marquis, P., Chauvel, P., Bartolomei, F.: Emotion induction after direct intracerebral stimulations of human amygdala. Cereb. Cortex 17, 1307–1313 (2007)CrossRefGoogle Scholar
  10. 10.
    Brainard, D.H.: The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997)CrossRefGoogle Scholar
  11. 11.
    Friston, K.J., Glaser, D.E., Henson, R.N., Kiebel, S., Phillips, C., Ashburner, J.: Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16, 484–512 (2002)CrossRefGoogle Scholar
  12. 12.
    Chiao, J.Y., Iidaka, T., Gordon, H.L., Nogawa, J., Bar, M., Aminoff, E., Sadato, N., Ambady, N.: Cultural specificity in amygdala response to fear faces. J. Cogn. Neurosci. 20, 2167–2174 (2008)CrossRefGoogle Scholar
  13. 13.
    Ijsselsteijn, W., de Ridder, H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of Stereoscopic Presentation, Image Motion, and Screen Size on Subjective and Objective Corroborative Measures of Presence. Presence 10, 298–311 (2001)CrossRefGoogle Scholar
  14. 14.
    Brett, M., Anton, J.-L., Valabregue, R., Poline, J.-B.: Region of interest analysis using an SPM toolbox. Annual Meeting of Organization for Human Brain Mapping. Sendai Japan (2002)Google Scholar
  15. 15.
    Tootell, R.B., Mendola, J.D., Hadjikhani, N.K., Ledden, P.J., Liu, A.K., Reppas, J.B., Sereno, M.I., Dale, A.M.: Functional analysis of V3A and related areas in human visual cortex. J. Neurosci. 17, 7060–7078 (1997)Google Scholar
  16. 16.
    Tsao, D.Y., Vanduffel, W., Sasaki, Y., Fize, D., Knutsen, T.A., Mandeville, J.B., Wald, L.L., Dale, A.M., Rosen, B.R., Van Essen, D.C., Livingstone, M.S., Orban, G.A., Tootell, R.B.: Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39, 555–568 (2003)CrossRefGoogle Scholar
  17. 17.
    Neri, P., Bridge, H., Heeger, D.J.: Stereoscopic processing of absolute and relative disparity in human visual cortex. J. Neurophysiol. 92, 1880–1891 (2004)CrossRefGoogle Scholar
  18. 18.
    Eickhoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K.: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)CrossRefGoogle Scholar
  19. 19.
    Anzai, A., DeAngelis, G.C.: Neural computations underlying depth perception. Curr. Opin. Neurobiol. 20, 367–375 (2010)CrossRefGoogle Scholar
  20. 20.
    Baños, R.M., Botella, C., Rubió, I., Quero, S., García-Palacios, A., Alcañiz, M.: Presence and emotions in virtual environments: the influence of stereoscopy. Cyberpsychol. Behav. 11, 1–8 (2008)CrossRefGoogle Scholar
  21. 21.
    Paradis, A.L., Cornilleau-Pérès, V., Droulez, J., Van De Moortele, P.F., Lobel, E., Berthoz, A., Le Bihan, D., Poline, J.B.: Visual perception of motion and 3-D structure from motion: an fMRI study. Cereb. Cortex 10, 772–783 (2000)CrossRefGoogle Scholar
  22. 22.
    Paradis, A.L., Droulez, J., Cornilleau-Pérès, V., Poline, J.B.: Processing 3D form and 3D motion: respective contributions of attention-based and stimulus-driven activity. Neuroimage 43, 736–747 (2008)CrossRefGoogle Scholar
  23. 23.
    Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J.T., Orban, G.A.: Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298, 413–415 (2002)CrossRefGoogle Scholar
  24. 24.
    Ban, H., Preston, T.J., Meeson, A., Welchman, A.E.: The integration of motion and disparity cues to depth in dorsal visual cortex. Nat. Neurosci. 15, 636–643 (2012)CrossRefGoogle Scholar
  25. 25.
    Alink, A., Euler, F., Kriegeskorte, N., Singer, W., Kohler, A.: Auditory motion direction encoding in auditory cortex and high-level visual cortex. Hum. Brain Mapp. 33, 969–978 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Akitoshi Ogawa
    • 1
  • Cecile Bordier
    • 1
  • Emiliano Macaluso
    • 1
  1. 1.Neuroimaging LaboratorySanta Lucia FoundationRomeItaly

Personalised recommendations