Skip to main content

Self-organized Neural Representation of Time

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8226))

Included in the following conference series:

Abstract

Time is crucially involved in most of the activities of humans and animals. However, the cognitive mechanisms that support experiencing and processing time remain largely unknown. In the present work we follow a self-organized connectionist modeling approach to study how time may be encoded in a neural network based cognitive system in order to provide suggestions for possible time processing mechanisms in the brain. A particularly interesting feature of our study regards the implementation of a single computational model to accomplish two different robotic behavioral tasks which assume diverse manipulation of time intervals. Examination of the implemented cognitive systems revealed that it is possible to integrate the main theoretical models of time representation existing today into a new and particularly effective theory that can sufficiently explain a series of neuroscientific observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bueti, D.: The sensory representation of time. Frontiers in Integrative Neuroscience 5(34) (2011)

    Google Scholar 

  2. Dragoi, V., Staddon, J., Palmer, R., Buhusi, C.: Interval timing as an emergent learning property. Psychol. Review 110(1), 126–144 (2003)

    Article  Google Scholar 

  3. Droit-Volet, S., Meck, W., Penney, T.: Sensory modality and time perception in children and adults. Behav. Process 74, 244–250 (2007)

    Article  Google Scholar 

  4. Gibbon, J., Church, R., Meck, W.: Scalar timing in memory. In: Gibbon, J., Allan, L.G. (eds.) Timing and Time Perception, pp. 52–77. New York Academy of Sciences, New York (1984)

    Google Scholar 

  5. Ivry, R.B., Schlerf, J.E.: Dedicated and intrinsic models of time perception. Tr. in Cognitive Sciences 12(7), 273–280 (2008)

    Article  Google Scholar 

  6. Janssen, P., Shadlen, M.N.: A representation of the hazard rate of elapsed time in macaque area lip. Nat. Neurosci. 8(2), 234–241 (2005)

    Article  Google Scholar 

  7. Karmarkar, U.R., Buonomano, D.V.: Timing in the absence of clocks: Encoding time in neural network states. Neuron 53(3), 427–438 (2007)

    Article  Google Scholar 

  8. Laje, R., Cheng, K., Buonomano, D.: Learning of temporal motor patterns: an analysis of continuous versus reset timing. Front. Integr. Neurosc. 5(61) (2011)

    Google Scholar 

  9. Maniadakis, M., Trahanias, P.: Temporal cognition: a key ingredient of intelligent systems. Frontiers in Neurorobotics 5 (2011)

    Google Scholar 

  10. Maniadakis, M., Trahanias, P., Tani, J.: Explorations on artificial time perception. Neural Networks 22, 509–517 (2009)

    Article  Google Scholar 

  11. Maniadakis, M., Wittmann, M., Trahanias, P.: Time experiencing by robotic agents. In: Proc. 11th European Symposium on Artificial Neural Networks (2011)

    Google Scholar 

  12. Meck, W., Penney, T., Pouthas, V.: Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology 18(2), 145–152 (2008)

    Article  Google Scholar 

  13. Miall, C.: The storage of time intervals using oscillating neurons. Neural Computation 1, 359–371 (1989)

    Article  Google Scholar 

  14. Ruppin, E.: Evolutionary autonomous agents: A neuroscience perspective. Nature Reviews Neuroscience 3(2), 132–141 (2002)

    Article  Google Scholar 

  15. Simen, P., Balci, F., de Souza, L., Cohen, J., Holmes, P.: A model of interval timing by neural integration. J. Neuroscience 31, 9238–9253 (2011)

    Article  Google Scholar 

  16. Staddon, J., Higa, J.: Time and memory: towards a pacemaker-free theory of interval timing. J. Exp. Anal. Behav. 71(2), 215–251 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maniadakis, M., Trahanias, P. (2013). Self-organized Neural Representation of Time. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42054-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42053-5

  • Online ISBN: 978-3-642-42054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics