Spiking Neural Network for On-line Cognitive Activity Classification Based on EEG Data

  • Stefan Schliebs
  • Elisa Capecci
  • Nikola Kasabov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)


The paper presents a method for the classification of EEG data recorded in two cognitive scenarios, a relaxing and memory task. The method uses a reservoir of spiking neurons that are activated by the spatio-temporal EEG data. The states of the reservoir are periodically read out and classified producing in a continuous classification result over time. After suitable optimization of the model parameters, we achieve a test accuracy of 82% on a small data set. Future applications of the proposed model are discussed including its use for an early detection of a cognitive impairment such as in Alzheimers disease.


Spiking Neural Networks Liquid State Machines Reservoir Computing EEG data classification Cognitive tasks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buteneers, P., Verstraeten, D., Nieuwenhuyse, B.V., Stroobandt, D., Raedt, R., Vonck, K., Boon, P., Schrauwen, B.: Real-time detection of epileptic seizures in animal models using reservoir computing. Epilepsy Research 103(2-3), 124–134 (2013)CrossRefGoogle Scholar
  2. 2.
    von der Elst, W., van Boxtel, M.J., van Breukelen, G.P., Jolles, J.: Assessment of information processing in working memory in applied settings: the paper and pencil memory scanning test. Psychological Medicine 37, 1335–1344 (2007)CrossRefGoogle Scholar
  3. 3.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  4. 4.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Tech. rep., Fraunhofer Institute for Autonomous Intelligent Syst. (2001)Google Scholar
  5. 5.
    Kasabov, N.: Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals. In: Mana, N., Schwenker, F., Trentin, E. (eds.) ANNPR 2012. LNCS (LNAI), vol. 7477, pp. 225–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Kindermans, P.J., Buteneers, P., Verstraeten, D., Schrauwen, B.: An uncued brain-computer interface using reservoir computing. In: Workshop: Machine Learning for Assistive Technologies, Proceedings, p. 8. Ghent University, Department of Electronics and information systems (2010)Google Scholar
  7. 7.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences 95(9), 5323–5328 (1998)CrossRefGoogle Scholar
  9. 9.
    Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Schliebs, S., Fiasché, M., Kasabov, N.: Constructing robust liquid state machines to process highly variable data streams. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 604–611. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Schliebs, S., Hunt, D.: Continuous classification of spatio-temporal data streams using liquid state machines. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part IV. LNCS, vol. 7666, pp. 626–633. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Schliebs
    • 1
  • Elisa Capecci
    • 1
  • Nikola Kasabov
    • 1
  1. 1.KEDRIAuckland University of TechnologyNew Zealand

Personalised recommendations