Skip to main content

Exploring the Power of Kernel in Feature Representation for Object Categorization

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Included in the following conference series:

  • 4361 Accesses

Abstract

Learning robust and invariant feature representations is always a crucial task in visual recognition and analysis. Mean square error (MSE) has been used in many feature encoding methods as a feature reconstruction criterion. However, due to the non-Gaussian noises and non-linearity structures in natural images, second order statistics like MSE are usually not sufficient to capture these information from image data. In this paper, motivated by the information-theoretic learning framework and kernel machine learning, we adopt a similarity measure called correntropy in the auto-encoder model to tackle this problem. The proposed maximum correntropy auto-encoder (MCAE) learns more robust and discriminative representations than MSE based model by performing computation in an infinite dimensional kernel space. Moreover, we further exploit the power of kernel by learning a kernel embedding neural network which explicitly maps data from Euclidean space to an approximated kernel space. Experimental results on standard object categorization datasets show the effectiveness of kernel learning in feature representation for visual recognition task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jianchao, Y., Kai, Y., Yihong, G., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801 (2009)

    Google Scholar 

  2. Le, Q.V., Karpenko, A., Ngiam, J., Ng, A.Y.: ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  3. Bengio, Y.: Learning deep architectures for ai. Foundations and Trends® in Machine Learning 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems 19, 153 (2007)

    Google Scholar 

  6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  7. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Transactions on Signal Processing 55, 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  8. Yuan, X.T., Hu, B.G.: Robust feature extraction via information theoretic learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1193–1200. ACM, New York (2009)

    Google Scholar 

  9. He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1561–1576 (2011)

    Article  Google Scholar 

  10. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. Advances in Neural Information Processing Systems 20, 1177–1184 (2007)

    Google Scholar 

  11. Maji, S., Berg, A.: Max-margin additive classifiers for detection. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 40–47. IEEE (2009)

    Google Scholar 

  12. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. Pattern Analysis and Machine Intellingence 34(3) (2011)

    Google Scholar 

  13. Yu, K., Xu, W., Gong, Y.: Deep learning with kernel regularization for visual recognition. In: NIPS 2008, pp. 1889–1896 (2008)

    Google Scholar 

  14. Rumelhart, D., Hintont, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  15. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks 2(1), 53–58 (1989)

    Article  Google Scholar 

  16. Hyvärinen, A., Hurri, J., Hoyer, P.: Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, vol. 39. Springer (2009)

    Google Scholar 

  17. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contracting auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the Twenty-Eight International Conference on Machine Learning (ICML 2011) (June 2011)

    Google Scholar 

  18. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  19. Principe, J., Xu, D.: Information-theoretic learning using reny’s quadratic entropy. In: First International Workshop on Independent Component Analysis (ICA 1999), pp. 407–412. Citeseer (1999)

    Google Scholar 

  20. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  21. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS 14, vol. 1001, p. 48109 (2011)

    Google Scholar 

  22. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  23. Yu, K., Zhang, T.: Improved local coordinate coding using local tangents (June 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, W., Yu, Y., Zhang, J., Huang, K. (2013). Exploring the Power of Kernel in Feature Representation for Object Categorization. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics