Skip to main content

Multiple Kernel Learning with Hierarchical Feature Representations

  • Conference paper
Book cover Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Included in the following conference series:

Abstract

In this paper, we suggest multiple kernel learning with hierarchical feature representations. Recently, deep learning represents excellent performance to extract hierarchical feature representations in unsupervised manner. However, since fine-tuning step of deep learning only considers global level of features for classification problems, it makes each layers hierarchical features intractable. Therefore, we propose a method to employ the combined multiple levels of pre-trained features via Multiple Kernel Learning (MKL). MKL is lately proposed optimization problem in classification and is applied to various machine learning problems. MKL automatically finds the best combination of kernels. By applying multiple kernel learning to hierarchical features pre-trained by deep learning, we obtain the optimal combinations of multiple levels of features for the classification task. Also, MKL is applied to analyze the contribution of each layer of features for classification by obtained weight of each kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning (2009)

    Google Scholar 

  2. Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines and deep belief networks. Neural Computation 20, 1631–1649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hinton, G.E., Salakhutdinov, R.: Reducing the Dimensionality of Data with Neaural Netwoks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, H., Grosse, R., Ranganath, R., Ng, A.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th International Conference on Machine Learning, ICML (2009)

    Google Scholar 

  5. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the SMO algorithm. In: International Conference on Machine Learning (2004)

    Google Scholar 

  6. Yang, J., Li, Y., Tian, Y.: Group-sensitive multiple kernel learning for object categorization. In: Computer Vision (2009)

    Google Scholar 

  7. Vedaldi, A., Gulshan, V.: Multiple kernels for object detection. In: IEEE 12th International Conference on Computer Vision (2009)

    Google Scholar 

  8. Kloft, M., Rückert, U., Bartlett, P.L.: A Unifying View of Multiple Kernel Learning. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 66–81. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Binder, A., Nakajima, S., Kloft, M., Müller, C.: Insights from Classifying Visual Concepts with Multiple Kernel Learning. PloS One 7 (2012)

    Google Scholar 

  10. Nakajima, S., Binder, A., Müller, C.: Multiple kernel learning for object classification. In: Proceedings of the 12th Workshop on Information-Based Induction Sciences (2009)

    Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 297, 273–297 (1995)

    Google Scholar 

  12. Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  13. Orabona, F., Jie, L.: Ultra-fast optimization algorithm for sparse multi kernel learning. In: Conference on Machine Learning (2011)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradien-Based Learning Applied to Document Recognition. Proceedings of the IEEE (1998)

    Google Scholar 

  15. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised feature learning. Ann Arbor (2010)

    Google Scholar 

  16. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 1–39 (2011)

    Google Scholar 

  17. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ICML, pp. 791–798 (2007)

    Google Scholar 

  18. Kloft, M., Laskov, P., Zien, A.: Efficient and Accurate Lp -Norm Multiple Kernel Learning. In: Advances in Neural Information Processing Systems, NIPS (2009)

    Google Scholar 

  19. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of Machine Learning Research 12, 2211–2268 (2011)

    Google Scholar 

  20. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 1554, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  21. Swersky, K., Chen, B., Marlin, B., de Freitas, N.: A tutorial on stochastic approximation algorithms for training Restricted Boltzmann Machines and Deep Belief Nets. In: 2010 Information Theory and Applications Workshop (ITA), pp. 1–10 (2010)

    Google Scholar 

  22. Salakhutdinov, R.: Learning deep generative models (2009)

    Google Scholar 

  23. MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist/

  24. STL-10 dataset, http://cs.stanford.edu/~acoates/stl10

  25. LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J., Lim, J.H., Choi, H., Kim, DS. (2013). Multiple Kernel Learning with Hierarchical Feature Representations. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics