Advertisement

A Study on Region of Interest of a Selective Attention Based on Gestalt Principles

  • Hyunrae Jo
  • Amitash Ojha
  • Minho Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)

Abstract

We propose a computational model to extend the region of attention in a visual scene. We assume that the visual information that is collected through bottom-up process is integrated by various mechanisms of perception process which in result further decides the attention regions of the object to accurately determine the object. This cycle is known as perception-action cycle. In our study we try to quantify relation between initial attention region and surrounding regions using Gestalt principles.

Keywords

Visual attention gestalt principles action-perception cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pettet, M.W., Gilbert, C.D.: Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Sciences 89(17), 8366–8370 (1992)CrossRefGoogle Scholar
  2. 2.
    Cutsuridis, V. (ed.): Perception-Action Cycle: Models, Architectures, and Hardware, vol. 1. Springer (2011)Google Scholar
  3. 3.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. II. Psychological Research 4(1), 301–350 (1923)CrossRefGoogle Scholar
  4. 4.
    Kootstra, G., Kragic, D.: Fast and bottom-up object detection, segmentation, and evaluation using Gestalt principles. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3423–3428 (2011)Google Scholar
  5. 5.
    Richtsfeld, A., Zillich, M., Vincze, M.: Implementation of Gestalt principles for object segmentation. In: 21st International Conference on Pattern Recognition (ICPR), pp. 1330–1333 (2012)Google Scholar
  6. 6.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  7. 7.
    Jeong, S., Ban, S.-W., Lee, M.: Stereo saliency map considering affective factors and selective motion analysis in a dynamic environment. Neural Networks 21(10), 1420–1430 (2008)CrossRefGoogle Scholar
  8. 8.
    Roelfsema, P.R., Houtkamp, R.: Incremental grouping of image elements in vision. Attention, Perception, & Psychophysics 73(8), 2542–2572 (2011)CrossRefGoogle Scholar
  9. 9.
    Wannig, A., Stanisor, L., Roelfsema, P.R.: Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Nature Neuroscience 14(10), 1243–1244 (2011)CrossRefGoogle Scholar
  10. 10.
    Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N.: Adaptive fuzzy systems for multichannel signal processing. Proceedings of the IEEE 87(9), 1601–1622 (1999)CrossRefGoogle Scholar
  11. 11.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hyunrae Jo
    • 1
  • Amitash Ojha
    • 1
  • Minho Lee
    • 1
  1. 1.School of Electronics EngineeringKyungpook National UniversityTaeguSouth Korea

Personalised recommendations