Advertisement

EM Training of Hidden Markov Models for Shape Recognition Using Cyclic Strings

  • Vicente Palazón-González
  • Andrés Marzal
  • Juan M. Vilar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)

Abstract

Shape descriptions and the corresponding matching techniques must be robust to noise and invariant to transformations for their use in recognition tasks. Most transformations are relatively easy to handle when contours are represented by strings. However, starting point invariance is difficult to achieve. One interesting possibility is the use of cyclic strings, which are strings with no starting and final points. Here we present the use of Hidden Markov Models for modelling cyclic strings and their training using Expectation Maximization. Experimental results show that our proposal outperforms other methods in the literature.

Keywords

hidden markov models cyclic strings shape recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palazón-Gonzláez, V., Marzal, A.: On the dynamic time warping of cyclic sequences for shape retrieval. Image and Vision Computing 30(12), 978–990 (2012)CrossRefGoogle Scholar
  2. 2.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2) (1989)Google Scholar
  3. 3.
    He, Y., Kundu, A.: 2-D shape classification using hidden Markov model. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1172–1184 (1991)CrossRefGoogle Scholar
  4. 4.
    Arica, N., Yarman-Vural, F.: A shape descriptor based on circular hidden Markov model. In: ICPR, vol. I, pp. 924–927 (2000)Google Scholar
  5. 5.
    Bicego, M., Murino, V.: Investigating hidden Markov models’ capabilities in 2D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 281–286 (2004)CrossRefGoogle Scholar
  6. 6.
    Bicego, Murino, Figueiredo: Similarity-based classification of sequences using hidden Markov models. Pattern Recognition 37, 2281–2291 (2004)Google Scholar
  7. 7.
    Thakoor, N., Gao, J., Jung, S.: Hidden Markov model-based weighted likelihood discriminant for 2-D shape classification. IEEE Trans. Image Processing 16(11), 2707–2719 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Palazón, V., Marzal, A., Vilar, J.M.: Cyclic linear hidden Markov models for shape classification. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 152–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bartolini, I., Ciaccia, P., Patella, M.: WARP: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 142–147 (2005)CrossRefGoogle Scholar
  10. 10.
    Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model of ecology. Bull. Amer. Math. Soc. 73, 360–363 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Levinson, S.E., Rabiner, L.R., Sondhi, M.M.: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. The Bell System Technical Journal 62(4), 1035–1074 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Latecki, L., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR, June 13-15, pp. 424–429. IEEE, Los Alamitos (2000)Google Scholar
  13. 13.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. In: Workshop on Content-Based Access of Image and Video Libraries, pp. 56–62 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vicente Palazón-González
    • 1
  • Andrés Marzal
    • 1
  • Juan M. Vilar
    • 1
  1. 1.Dept. Llenguatges i Sistemes Informàtics and Institute of New Imaging TechnologiesUniversitat Jaume I de Castelló.Spain

Personalised recommendations