Advertisement

A Wearable Cognitive Vision System for Navigation Assistance in Indoor Environment

  • Liyuan Li
  • Gang S. Wang
  • Weixun Goh
  • Joo-Hwee Lim
  • Cheston Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)

Abstract

Existing mobile navigation techniques are not applicable for indoor navigation. Obviously, the best navigator is a human companion. In this paper, we explore to build a wearable virtual navigator for indoor navigation. A novel cognitive vision system is designed which consists of long-term memory and working memory for complicated vision tasks in dynamic environments. The long-term memory mimics the flexibility and scalability of human cognitive memory for domain knowledge representation, and the working memory emulates the routine process and attention selection in human cognitive model for online visual perception. Efficient algorithms for image classification and object detection are organized and performed under cognitive perception framework to achieve real-time performance. Field tests demonstrate its effectiveness and efficiency by recognizing scenes, locations, and landmark objects in real-time, and subsequently providing context-aware assistant to guide the user in the navigation of a complex office environment.

Keywords

Indoor navigation cognitive architecture long-term memory working memory scene recognition object detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanpechuda, T., Kovavisaruch, L.: A Review of RFID Localization: Applications and Techniques. In: Proceedings of ECTI-CON, vol. 2, pp. 769–772 (2008)Google Scholar
  2. 2.
    Kashiwabara, T., Osawa, H., Shinozawa, K., Imai, M.: TEROOS: A Wearable Avatar to Enhance Joint Activities. In: Proceedings of CHI, pp. 2001–2004 (2012)Google Scholar
  3. 3.
    Mukawa, M., Lim, J.-H.: A Review of Cognitive Architectures for Visual Memory. In: Proceedings of BICA, pp. 233–238 (2012)Google Scholar
  4. 4.
    Haverinen, J., Kemppainen, A.: A Geomagnetic Field based Positioning Technique for Underground Mines. In: Proceedings of ROSE, pp. 7–12 (2011)Google Scholar
  5. 5.
    Filliat, D., Meyer, J.A.: Map-based Navigation in Mobile Robots:-I. A Review of Localization Strategies. Cognitive Systems Research 4, 243–282 (2003)CrossRefGoogle Scholar
  6. 6.
    Meyer, J.A., Filliat, D.: Map-based Navigation in Mobile Robots:-II. A Review of Map-Learning and Path-Planning Strategies. Cognitive Systems Research 4, 283–317 (2003)CrossRefGoogle Scholar
  7. 7.
    Pronobis, A., Caputo, B., Jensfelt, P., Christensen, H.I.: A Realistic Benchmark for Visual Indoor Place Recognition. Robotics and Autonomous Systems 58, 81–96 (2010)CrossRefGoogle Scholar
  8. 8.
    Chong, H.-Q., Tan, A.-H., Ng, G.-W.: Integrated Cognitive Architectures: A Survey. Artif. Intell. Rev. 28, 103–130 (2007)CrossRefGoogle Scholar
  9. 9.
    Bauchhage, C., Wachsmuth, S., Hanheide, M., Wrede, S., Sagerer, G., Heidemann, G., Ritter, H.: The Visual Active Memory Perspective on Integrated Recognition Systems. Image and Vision Computing 26, 5–14 (2008)CrossRefGoogle Scholar
  10. 10.
    Stewart, T.C., Choo, F.-X., Eliasmith, C.: Spaun: A Perception-Cognition-Action Model Using Spiking Neurons. In: Proc. 35th Annual Conference of the Cognitive Science Society, pp. 1018–1023 (2012)Google Scholar
  11. 11.
    Baddeley, A.: Working Memory: Theories, Models, and Controversies. Annu. Rev. Psychol. 63, 1–29 (2012)CrossRefGoogle Scholar
  12. 12.
    Schneider, W.X.: Visual-Spatial Working Memory, Attention, and Scene Representation: A Neuro-Cognitive Theory. Psychological Research 62, 220–236 (1999)CrossRefGoogle Scholar
  13. 13.
    Li, L., Goh, W., Lim, J.-H., Pan, S.J.: Extended Spectral Regression for Efficient Scene Recognition. Pattern Recognition (submitted)Google Scholar
  14. 14.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  15. 15.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Proceedings of CVPR, vol. 1, pp. 511–518 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liyuan Li
    • 1
  • Gang S. Wang
    • 1
  • Weixun Goh
    • 1
  • Joo-Hwee Lim
    • 1
  • Cheston Tan
    • 1
  1. 1.Institute for Infocomm ResearchSingaporeSingapore

Personalised recommendations