Advertisement

Proposal of Ultra-Short-Pulse Acoustic Imaging Using Complex-Valued Spatio-temporal Neural-Network Null-Steering

  • Kotaro Terabayashi
  • Akira Hirose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)

Abstract

We propose complex-valued spatio-temporal neural-network null- steering for wideband acoustic imaging with ultra-short pulses. We combine a complex-valued neural network (CVNN) and power-inversion adaptive array (PIAA) scheme to realize a practical-resolution imaging in the azimuth direction (direction perpendicular to the range direction) even with a small-aperture array. Simulations suggest that the proposed method presents a higher resolution than conventional methods such as Capon’s method as well as a real-valued neural-network PIAA method.

Keywords

Acoustic imaging power-inversion adaptive array (PIAA) complex-valued spatio-temporal neural network (CVSTNN) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 57(8), 1408–1418 (1969)CrossRefGoogle Scholar
  2. 2.
    Wang, Z., Li, J., Stoica, P., Nishida, T., Sheplak, M.: Constant-beamwidth and constant-powerwidth wideband robust capon beamformers for acoustic imaging. Journal of the Acoustical Society of America 116, 1621–1631 (2004)CrossRefGoogle Scholar
  3. 3.
    Holfort, I., Gran, F., Jensen, J.: P2b-12 minimum variance beamforming for high frame-rate ultrasound imaging. In: IEEE Ultrasonics Symposium, pp. 1541–1544 (October 2007)Google Scholar
  4. 4.
    Synnevag, J.-F., Austeng, A., Holm, S.: Benefits of minimum-variance beamforming in medical ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 56(9), 1868–1879 (2009)CrossRefGoogle Scholar
  5. 5.
    Nishino, T., Yamaki, R., Hirose, A.: Ultrasonic imaging for boundary shape generation by phase unwrapping with singular-point elimination based on complex-valued Markov random field model. IEICE Transactions on Fundamentals E93-A(1), 219–226 (2010)CrossRefGoogle Scholar
  6. 6.
    Suksmono, A.B., Hirose, A.: Beamforming of ultra-wideband pulses by a complex-valued spatio-temporal multilayer neural network. International Journal of Neural Systems 15(1), 1–7 (2005)Google Scholar
  7. 7.
    Compton, R.: The power-inversion adaptive array: Concept and performance. IEEE Transactions on Aerospace and Electronic Systems AES-15(6), 803–814 (1979)CrossRefGoogle Scholar
  8. 8.
    Hirose, A.: Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme. Information Sciences –Applications– 2, 103–117 (1994)CrossRefGoogle Scholar
  9. 9.
    Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Transactions on Neural Networks and Learning Systems 23, 541–551 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kotaro Terabayashi
    • 1
  • Akira Hirose
    • 1
  1. 1.Department of Electrical Engineering and Information SystemsThe University of TokyoBunkyo-kuJapan

Personalised recommendations