A Comparative Study on Image Retrieval Systems

  • Chee Sheen Chan
  • Jer Lang Hong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)


Search Engines such as Google is capable of processing user queries in a fast and efficient way. Though they are proven to be reliable, they are still incapable of handling complex queries. For example, Image Search Engines generally suffer from low accuracy when handling complex queries due to the lack of information available in an image. This paper presents the various image retrieval systems available currently, with in depth discussions on their operation and drawbacks. We also demonstrated the potential of using ontological technique in image retrieval systems, which has shown promising results in many research domains.


Human-Centred Design Webpage Segmentation Image Indexing Search Engines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradshaw, B.: Semantic Based Image Retrieval: A Probabilistic Approach. In: Proceedings of the 8th Annual ACM International Conference on Multimedia, pp. 167–176. ACM (2000)Google Scholar
  2. 2.
    Chen, Y., Ma, W.Y., Zhang, H.J.: Detecting web page structure for adaptive viewing on small form factor devices. In: Proceedings of the 12th International Conference on World Wide Web, pp. 20–24 (2001)Google Scholar
  3. 3.
    Coelho, T., Calado, P., Souza, L., Ribeiro-Neto, B., Muntz, R.: Image retrieval using multiple evidence ranking. IEEE Transactions on Knowledge and Data Engineering 16(4), 408–417 (2004)CrossRefGoogle Scholar
  4. 4.
    Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Dom, B., Gorkani, M., Hafner, J., et al.: Query by image and video content: the QBIC system. Computer 28(9), 23–32 (1995), doi:10.1109/2.410146CrossRefGoogle Scholar
  5. 5.
    Frankel, C., Swain, M., Athitsos, V.: Webseer: an image search engine for the world-wide web. Tech Rep. 94–14 (1996)Google Scholar
  6. 6.
    Gevers, T., Smeulders, W.: Color constant ratio gradients for image segmentation and similarity of texture objects. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 1–18. IEEE (2001)Google Scholar
  7. 7.
    Gong, Z., Hou U, L., Cheang, C.W.: Web image indexing by using associated texts. Knowledge and Information Systems 10(2), 243–264 (2006)Google Scholar
  8. 8.
    Inoue, M.: On the need for annotation-based image retrieval. In: Proceedings of the Workshop on Information Retrieval in Context (IRiX), Sheffield, UK, pp. 44–46 (2004)Google Scholar
  9. 9.
    Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval us-ing cross-media relevance models. In: Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 119–126 (2003)Google Scholar
  10. 10.
    Joshi, P.M., Liu, S.: Web document text and images extraction using DOM analysis and natural language processing. In: Proceedings of the 9th ACM Symposium on Document Engineering - DocEng 2009, p. 218. ACM Press, New York (2009)Google Scholar
  11. 11.
    Leong, C.W., Mihalcea, R., Hassan, S.: Text Mining For Automatic Image Tagging. In: COLING, pp. 647–655 (2010)Google Scholar
  12. 12.
    Leong, C.W., Mihalcea, R.: Explorations in Automatic Image Annotation using Textual Features. In: Linguistic Annotation Workshop, pp. 56–59 (2009)Google Scholar
  13. 13.
    Li, F.-F., Fergus, R., Perona, P.: Learning generative visual models from few train-ing examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)CrossRefGoogle Scholar
  14. 14.
    Lu, Y., Hu, C., Zhu, X., Zhang, H.J., Yang, Q.: A unified framework for semantics and feature based relevance feedback in image retrieval systems. In: Proceedings of the 8th Annual ACM International Conference on Multimedia, pp. 31–37. ACM (2000)Google Scholar
  15. 15.
    Meghini, C., Sebastiani, F., Straccia, U.: A model for multimedia information retrieval. Journal of the ACM (JACM) 48(5) (2001)Google Scholar
  16. 16.
    Mukherjea, S., Hirata, K.: Amore: A World Wide Web image retrieval engine. World Wide Web 2, 115–132 (1999)CrossRefGoogle Scholar
  17. 17.
    Rorissa, A.: User-generated descriptions of individual images versus labels of groups of images: A comparison using basic level theory. Information Processing & Management 44(5), 1741–1753 (2008)CrossRefGoogle Scholar
  18. 18.
    Sclaroff, S., Taycher, L., Cascia, M.L.: ImageRover: A content-based image browser for the World Wide Web. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 2–9 (1999)Google Scholar
  19. 19.
    Shen, H.T., Ooi, B.C., Tan, K.-L.: Giving meanings to WWW images. In: Proceedings of the 8th Annual ACM International Conference on Multimedia, pp. 39–47 (2000)Google Scholar
  20. 20.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  21. 21.
    Smith, J.R., Chang, S.F.: An image and video search engine for the world-wide web. In: Symposium on Electronic Imaging Science and Technology-Storage & Retrieval for Image and Video Databases V (1997)Google Scholar
  22. 22.
    Wang, C., Zhang, L., Zhang, H.-J.: Learning to reduce the semantic gap in web im-age retrieval and annotation. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2008, p. 355. ACM Press, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chee Sheen Chan
    • 1
  • Jer Lang Hong
    • 1
  1. 1.School of Computing and ITTaylor’s UniversityMalaysia

Personalised recommendations