Applicability of ICA-Based Dimension Reduction in Fuzzy c-Means-Based Classifier

  • Takuya Kobayashi
  • Katsuhiro Honda
  • Akira Notsu
  • Hidetomo Ichihashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8228)


Fuzzy c-Means-based Classifier (FCMC) has been proved to have high performances based on clustering concepts in conjunction with several parameter optimization methods. In general, FCMC is applied to high-dimensional data after dimension reduction by Principal Component Analysis (PCA). In this paper, the applicability of Independent Component Analysis (ICA)-based dimension reduction is investigated in the FCMC context. ICA is a computational method for separating a multivariate signal into additive subcomponents with the assumption of non-Gaussian signals. This paper compares the performance of FCMC using four data sets. Two initialization approaches of the PCA-Tree-based and k-dimensional tree (kd-Tree)-based are also compared.


Classifier Clustering Principal component analysis Independent component analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobayashi, T., Ichihashi, H., Honda, K., Notsu, A.: Mixed Usage of MATLAB and Visual C for Improving Classification Time and Training Time of FCM Classifier. In: 6th International Conference on Soft Computing and Intelligent Systems and 13th International Symposium on Advanced Intelligent Systems, pp. 1994–1998 (2012)Google Scholar
  2. 2.
    Karhunen, J., Oja, E., Wang, L., Vigario, R., Joutsensalo, J.: A Class of Neural Networks for Independent Component Analysis. IEEE Trans. Neural Networks 8, 486–504 (1997)CrossRefGoogle Scholar
  3. 3.
    Sproull, R.F.: Refinements to Nearest-neighbor Searching in k-dimensional Trees. Algorithmica 6, 579–589 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding the Best Matches in Logarithmic Expected Time. ACM Trans. Math, Software 3(3), 209–226 (1977)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM 18(9), 509–517 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981)Google Scholar
  7. 7.
    Miyamoto, S., Yasukochi, T., Inokuchi, R.: A Family of Fuzzy and Defuzzified c-Means Algorithms. In: International Conference on Computational Intelligence for Modelling, Control and Automation, pp. 170–176 (2005)Google Scholar
  8. 8.
    Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering, Methods in c-Means Clustering with Applications. Springer, Berlin (2008)Google Scholar
  9. 9.
    Ichihashi, H., Miyagishi, K., Honda, K.: Fuzzy c-Means Clustering with Regularization by K-L Information. In: 10th IEEE International Conference on Fuzzy Systems, vol. 3, pp. 924–927 (2001)Google Scholar
  10. 10.
    Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Component Analyzers. Neural Computation 11, 443–482 (1999)CrossRefGoogle Scholar
  11. 11.
    Sun, F., Omachi, S., Aso, H.: Precise Selection of Candidates for Hand Written Character Recognition. IEICE Trans. Information and Systems E79-D(3), 510–515 (1996)Google Scholar
  12. 12.
    Ichihashi, H., Notsu, A., Honda, K.: Semi-hard c-Means Clustering with Application to Classifier Design. In: 2000 IEEE International Conference on Fuzzy Systems, pp. 2788–2795 (2010)Google Scholar
  13. 13.
    Ichihashi, H., Honda, K., Notsu, A.: Comparison of Scaling Behavior Between Fuzzy c-Means Based Classifier with Many Parameters and LibSVM. In: 2011 IEEE International Conference on Fuzzy Systems, pp. 386–393 (2011)Google Scholar
  14. 14.
    Hyvärinen, A., Oja, E.: A Fast Fixed-point Algorithm for Independent Component Analysis. Advances in Neural Information Processing Systems 9, 1483–1492 (1997)Google Scholar
  15. 15.
    Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S.: Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis. Artificial Intelligence in Medicine 23(2), 149–169 (2001)CrossRefGoogle Scholar
  16. 16.
    Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of Radar Returns from the Ionosphere Using Neural Networks. Johns Hopkins APL Technical Digest 10, 262–266 (1989)Google Scholar
  17. 17.
    Gorman, R.P., Sejnowski, T.J.: Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets. Neural Networks 1, 75–89 (1988)CrossRefGoogle Scholar
  18. 18.
    Ichihashi, H., Notsu, A., Honda, K., Miyamoto, E.: FCM Classifier for High-dimensional Data. In: 2008 IEEE International Conference on Fuzzy System, pp. 200–206 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takuya Kobayashi
    • 1
  • Katsuhiro Honda
    • 1
  • Akira Notsu
    • 1
  • Hidetomo Ichihashi
    • 2
  1. 1.Department of Computer Science and Intelligent SystemsOsaka Prefecture UniversityOsakaJapan
  2. 2.Faculty of EconomicsOsaka University of Economics and LawOsakaJapan

Personalised recommendations