Skip to main content

NeuCubeRehab: A Pilot Study for EEG Classification in Rehabilitation Practice Based on Spiking Neural Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Abstract

One of the most important issues among active rehabilitation technique is how to extract the voluntary intention of patient through bio-signals, especially EEG signal. This pilot study investigates the feasibility of utilizing a 3D spiking neural networks-based architecture named NeuCube for EEG data classification in the rehabilitation practice. In this paper, the architecture of the NeuCube is designed and a Functional Electrical Stimulation (FES) rehabilitation scenario is introduced which requires accurate classification of EEG signal to achieve active FES control. Three classes of EEG signals corresponding to three imaginary wrist motions are collected and classified. The NeuCube architecture provides promising classification results, which demonstrates our proposed method is capable of extracting the voluntary intention in the rehabilitation practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Y., Hu, J., Zhang, F., Hou, Z.: Simulation Study of an FES-Involved Control Strategy for Lower Limb Rehabilitation Robot. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part II. LNCS, vol. 7507, pp. 85–95. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Koji, I., Takahiro, S., Toshiyuki, K.: Lower-limb Joint Torque and Position Controls by Functional Electrical Stimulation. In: Complex Medical Engineering, pp. 240–249 (2006)

    Google Scholar 

  3. Li, J.T., Zheng, R.Y., Zhang, Y.R., Yao, J.C.: iHandRehab: an Interactive Hand Exoskeleton for Active and Passive Rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, pp. 1–6 (2011)

    Google Scholar 

  4. Oonishi, Y., Sehoon, O.: A New Control Method for Power-Assisted Wheelchair Based on the Surface Myoelectric Signal. IEEE Transaction on Industral Electronics 57(9), 3191–3196 (2010)

    Article  Google Scholar 

  5. Ang, K.K., Guan, C., Phua, K.S.: Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. In: 34th Annual International Conference of the IEEE EMBS, San Diego, pp. 4128–4131 (2012)

    Google Scholar 

  6. Kasabov, N.: Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition. In: 2012 IEEE World Congress on Computational Intelligence, pp. 234–260 (2012)

    Google Scholar 

  7. Buonomano, D., Maass, W.: State-dependent computations: Spatio-temporal processing in cortical networks. Nature Reviews, Neuroscience 10, 113–125 (2009)

    Article  Google Scholar 

  8. Kasabov, N.: NeuCube EvoSpike Architecture for Spatio-Temporal Modelling and Pattern Recognition of Brain Signals. In: Mana, N., Schwenker, F., Trentin, E. (eds.) ANNPR 2012. LNCS (LNAI), vol. 7477, pp. 225–243. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kasabov, N., Dhoble, K., Nuntalid, N., Indiverim, G.: Dynamic Evolving Spiking Neural Networks for On-line Spatio- and Spectro-Temporal Pattern Recognition. Neural Networks 41, 188–201 (2012)

    Article  Google Scholar 

  10. Song, S., Miller, K., Abbott, L., et al.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  11. Lynch, C.L., Popovic, M.R.: Functional electrical stimulation. Control Systems Magazine, 40–50 (2008)

    Google Scholar 

  12. Gerstner, W.: Time structure of the activity of neural network models. Phys. Rev. 51, 738–758 (1995)

    Google Scholar 

  13. Delbruck, T.: jAER open source project (2007), http://jaer.wiki.sourceforge.net

  14. Berry, M.J., Warland, D.K., Meister, M.: The structure and precision of retinal spiketrains. PNAS 94, 5411–5416 (1997)

    Article  Google Scholar 

  15. Nuntalid, N., Dhoble, K., Kasabov, N.: EEG Classification with BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural Network. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part I. LNCS, vol. 7062, pp. 451–460. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Hu, J., Kasabov, N., Hou, Z., Cheng, L. (2013). NeuCubeRehab: A Pilot Study for EEG Classification in Rehabilitation Practice Based on Spiking Neural Networks. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics