Skip to main content

CMOS ASIC Design of a High Performance Digital Fuzzy Processor That Can Compute on Arbitrary Membership Functions

  • Conference paper
VLSI Design and Test

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 382))

Abstract

The paper presents the CMOS ASIC design of a digital fuzzy processor, that can compute on arbitrary membership functions. The architecture exploits pipelining and parallelism to reduce the inferencing delay. The processor has been designed to operate at a frequency of 2 GHz using a power supply of 1 V. For a system with 256 active rules, the circuit has delay of 1285 ns and power dissipation of 70.5 mW. The set of common antecedents for a group of rules are stored separately, leading to reduction in delay and power dissipation. The performance of the proposed circuit has been compared with state of the art RISC and CISC processor architectures, and found to dissipate much less power and has much less delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Togai, M., Watanabe, H.: Expert System on a Chip: An Engine for Real-Time Approximate Reasoning. IEEE Expert Systems Magazine 1(3), 55–62 (1986)

    Google Scholar 

  2. Lim, M.H., Takefuji, Y.: Implementing fuzzy rule-based systems on silicon chips. IEEE Expert Systems Magazine 5(1), 31–45 (1990)

    Google Scholar 

  3. Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man and Cybernetics 3(1), 28–44 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zadeh, L.A.: Fuzzy logic, neural networks and soft computing. ACM Transactions on Computing 37(3), 77–84 (1994)

    MathSciNet  Google Scholar 

  5. Surmann, H., Ungering, A.P.: Fuzzy rule-based systems on general purpose processors. IEEE Micro 15(4), 40–48 (1995)

    Article  Google Scholar 

  6. Watanabe, H., Detloff, W.D., Symon, J.R., Yount, K.E.: VLSI fuzzy chip and inference accelerator board systems. In: Fuzzy Logic for Management of Uncertainty, pp. 211–243. Wiley, New York (1992)

    Google Scholar 

  7. Nakamura, K., Sakashita, N., Nitta, Y., Shimomura, K., Tokuda, T.: Fuzzy inference and fuzzy inference processor. IEEE Micro 13(5), 37–48 (1993)

    Article  Google Scholar 

  8. Manzoul, M.A., Tayal, S.: Systolic VLSI array for multi-variable fuzzy control systems. International Journal of Systems and Cybernetics 21(1), 27–42 (1990)

    Article  MATH  Google Scholar 

  9. Jaramillo-Botero, A., Miyake, Y.: A high speed parallel architecture for fuzzy infer-ence and fuzzy control of multiple processes. In: Proceedings of IEEE 1994 World Congress on Computational Intelligence, vol. 3, pp. 1765–1770 (1994)

    Google Scholar 

  10. Orsila, H., Kangas, T., Salminen, E., Hamalainen, T.D., Hannikainen, M.: Automated memory-aware application distribution for Multi-processor System-on-Chips. Journal of Systems Architecture 53(11), 795–815 (2007)

    Article  Google Scholar 

  11. Samoladas, V., Petrou, L.: Special-purpose architectures for fuzzy logic controllers. Microprocessing and Microprogramming 40(4), 275–289 (1994)

    Article  Google Scholar 

  12. de Salvador, L., Gutierrez, J.: A multilevel systolic approach for fuzzy inference hardware. IEEE Micro 15(5), 61–71 (1995)

    Article  Google Scholar 

  13. Raychev, R., Mtibaa, A., Abid, M.: VHDL Modeling of a Fuzzy Co-Processor Architecture. In: Proceedings of International Conference on Computer Systems and Technologies, pp. I. 2.1–I. 2.6 (2005)

    Google Scholar 

  14. Aranguren, G., Barron, M., Arroyabe, J.L., Garcia-Carreira, G.: A pipe-line fuzzy controller in FPGA. In: Proceedings of IEEE Conference on Fuzzy Systems, vol. 2, pp. 635–640 (1997)

    Google Scholar 

  15. Roy Chowdhury, S., Saha, H.: A High-Performance FPGA-Based Fuzzy Processor Architecture for Medical Diagnosis. IEEE Micro 28(5), 38–52 (2008)

    Article  Google Scholar 

  16. Yager, R.R., Filev, D.P.: SLIDE: A simple adaptive defuzzification method. IEEE Transcations on Fuzzy System 1(1) (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guha, A., Roy Chowdhury, S. (2013). CMOS ASIC Design of a High Performance Digital Fuzzy Processor That Can Compute on Arbitrary Membership Functions. In: Gaur, M.S., Zwolinski, M., Laxmi, V., Boolchandani, D., Sing, V., Sing, A.D. (eds) VLSI Design and Test. Communications in Computer and Information Science, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42024-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42024-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42023-8

  • Online ISBN: 978-3-642-42024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics