Skip to main content

Radioligands for Imaging Vesicular Monoamine Transporters

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The vesicular monoamine transporter type 2 (VMAT2) is a protein specifically located in the membrane of neurotransmitter storage vesicles of monoaminergic neurons (dopamine, serotonin, norepinephrine, and histamine). The noninvasive in vivo imaging of this transporter has been utilized as a marker of the changes in monoaminergic innervation in human neurological diseases. Development of suitably radiolabeled compounds for in vivo imaging using positron emission tomography (PET) produced optimized carbon-11 ((+)-α-[11C]dihydrotetrabenazine, DTBZ) and fluorine-18 (9-(3-[18F]fluoropropyl)-dihydrotetrabenazine, AV-133) radioligands. Applications of VMAT2 radioligand imaging in numerous neurodegenerative diseases (e.g., Parkinson’s and related movement disorders, dementia with Lewy bodies) and psychiatric diseases (e.g., schizophrenia) and drug abuse have demonstrated that in vivo imaging of the VMAT2 provides a powerful tool to examine the progress and extent of changes of monoaminergic innervation in human disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AMPT:

Alpha-methyl-para-tyrosine

AV-133:

9-(3-fluoropropyl)-10-methoxy-3-(2-methylpropyl)-1,3,4,6,7,11b-hexahydrobenzo[a]quinolizin-2-ol

DOPA:

3,4-dihydroxyphenylalanine

DTBZ:

Dihydrotetrabenazine: 9,10-dimethoxy-3-(2-methylpropyl)-1,3,4,6,7,11b-hexahydrobenzo[a]quinolizin-2-ol

fluoroDOPA:

6-fluoro-3,4-dihydroxyphenylalanine

MDMA:

3,4-methylenedioxy-N-methylamphetamine

MPTP:

1-methyl-4-phenyl-2,3,5,6-tetrahydropyridine

MPP+:

1-methyl-4-phenylpyridinium

MTBZ:

Methoxytetrabenazine

NMR:

Nuclear magnetic resonance

HD:

Huntington’s disease

LBD:

Lewy body disease

MSA:

Multiple system atrophy

OPCA:

Olivopontocerebellar atrophy

PD:

Parkinson’s disease

PDD:

Parkinson’s disease with dementia

PET:

Positron emission tomography

PSP:

Progressive supranuclear palsy

SPECT:

Single photon emission computed tomography

TBZ:

Tetrabenazine: 3-isobutyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-pyrido[2,1-a]isoquinolin-2-one

VMAT:

Vesicular monoamine transporter

VAChT:

Vesicular acetylcholine transporter

VGLUT:

Vesicular glutamate transporter

VGAT:

Vesicular GABA transporter

References

  • Adams JR, van Netten H, Schulzer M et al (2005) PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 128:2777–2785

    PubMed  Google Scholar 

  • Albin RA, Koeppe RA, Bohnen NI et al (2003) Increased ventral striatal monoaminergic innervation in Tourette syndrome. Neurology 61:310–315

    CAS  PubMed  Google Scholar 

  • Albin RL, Koeppe RA, Wernette K et al (2009) Striatal [11C]dihydrotetrabenazine and [11C]methylphenidate binding in Tourette syndrome. Neurology 72:1390–1396

    CAS  PubMed  Google Scholar 

  • Amarasinghe K, Rishel M, Dinn, S et al (2009) Fluorinated dihydrotetrabenazine ether imaging agents and probes. World Patent WO 2009/05520 A2

    Google Scholar 

  • Blesa J, Juri C, Collantes M et al (2010) Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An 18F-DOPA and 11C-DTBZ study. Neurobiol Dis 38:456–463

    CAS  PubMed  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson’s disease. Behav Brain Res 221:564–573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnen NI, Frey KA (2007) Imaging of cholinergic and monoaminergic neurochemical changes in neurodegenerative disorders. Mol Imaging Biol 9:243–257

    PubMed  Google Scholar 

  • Bohnen NI, Koeppe RA, Mayer P et al (2000) Decreased striatal monoaminergic terminals in Huntington’s disease. Neurology 54:1753–1759

    CAS  PubMed  Google Scholar 

  • Bohnen NI, Albin RL, Koeppe RA et al (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson’s disease. J Cereb Blood Flow Metab 26:1198–1212

    CAS  PubMed  Google Scholar 

  • Boileau I, Rusjan P, Houle S et al (2008) Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: is VMAT2 a stable dopamine neuron marker? J Neurosci 28:9850–9856

    CAS  PubMed  Google Scholar 

  • Boileau I, Houle S, Rusjan PM et al (2010) Influence of a low dose of amphetamine on vesicular monoamine transporter binding: a PET (+)[11C]DTBZ study in humans. Synapse 64:417–420

    CAS  PubMed  Google Scholar 

  • Boldt KG, Brine GA, Rehder K (2008) Synthesis of (+)-9-O-desmethyl-dihydrotetrabenazine, precursor for the high affinity VMAT2 imaging PET radioligand [11C]-(+)-dihydrotetrabenazine. Org Prep Proc Int 40:379–384

    CAS  Google Scholar 

  • Brooks DJ, Pavese N (2011) Imaging biomarkers in Parkinson’s disease. Prog Neurobiol 95:614–628

    CAS  PubMed  Google Scholar 

  • Burke JF, Albin RL, Koeppe RA et al (2011) Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 134:1647–1657

    PubMed  Google Scholar 

  • Chan GLY, Holden JE, Stoessl AJ et al (1999) Reproducibility studies with 11C-DTBZ, a monoamine vesicular transporter inhibitor, in healthy human subjects. J Nucl Med 40:283–289

    CAS  PubMed  Google Scholar 

  • Chao K-T, Tsao H-H, Weng Y-H et al (2012) Quantitative analysis of binding sites for 9-fluoropropyl-(+)-dihydrotetrabenazine ([18F]AV-133) in a MPTP-lesioned PD mouse model. Synapse 66:823–831

    CAS  PubMed  Google Scholar 

  • Chen MK, Kuwabara H, Zhou Y et al (2008) VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 105:78–90

    CAS  PubMed  Google Scholar 

  • Chou KL, Koeppe RA, Bohnen NI (2011) Rhinorrhea: a common nondopaminergic feature of Parkinson’s disease. Mov Dis 26:320–323

    Google Scholar 

  • Darchen F, Scherman D, Laduron PM et al (1988) Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol 33:672–677

    CAS  PubMed  Google Scholar 

  • Darchen F, Masuo Y, Vial M et al (1989) Quantitative autoradiography of the rat brain vesicular monoamine transporter using the binding of [3H]dihydrotetrabenazine and 7-amino-8-[125I]iodoketanserin. Neuroscience 33:4341–4349

    Google Scholar 

  • DaSilva JN, Kilbourn MR (1992) In vivo binding of [11C]tetrabenazine to vesicular monoamine transporters in mouse brain. Life Sci 51:593–600

    CAS  PubMed  Google Scholar 

  • DaSilva JN, Kilbourn MR, Domino EF (1993a) In vivo imaging of monoaminergic nerve terminals in normal and MPTP-lesioned primate brain using positron emission tomography (PET) and [11C]tetrabenazine. Synapse 14:128–131

    CAS  PubMed  Google Scholar 

  • DaSilva JN, Kilbourn MR, Mangner TJ (1993b) Synthesis of [11C]tetrabenazine, a vesicular monoamine uptake inhibitor, for PET imaging studies. Appl Radiat Isot 44:673–676

    CAS  PubMed  Google Scholar 

  • DaSilva JN, Kilbourn MR, Mangner TJ (1993c) Synthesis of a [11C]methoxy derivative of α-dihydrotetrabenazine: a radioligand for studying the vesicular monoamine transporter. Appl Radiat Isot 44:1487–1489

    CAS  PubMed  Google Scholar 

  • De la Fuente-Fernandez R, Furtado S, Guttman M et al (2003a) VMAT2 binding is elevated in Dopa-responsive dystonia: visualizing empty vesicles by PET. Synapse 49:20–28

    Google Scholar 

  • De la Fuente-Fernandez R, Lim AS, Sossi V et al (2003b) Age and severity of nigrostriatal damage at onset of Parkinson’s disease. Synapse 47:152–158

    Google Scholar 

  • De la Fuente-Fernandez R, Sossi V, McCormick S et al (2009) Visualizing vesicular dopamine dynamics in Parkinson’s disease. Synapse 63:713–716

    PubMed  Google Scholar 

  • De la Fuente-Fernandez R, Schulzer M, Kuramoto L et al (2011) Age-specific progression of nigrostriatal dysfunction in Parkinson’s disease. Ann Neurol 69:803–810

    PubMed  Google Scholar 

  • Doudet DJ, Rosa-Neto P, Munk OL et al (2006) Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multitracer PET study. Neuroimage 30:26–35

    Google Scholar 

  • Eiden LE, Schafer MK-H, Weihe E et al (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 447:636–640

    CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Woolverton WL, Kilbourn M et al (2004) Behavioral and neurochemical consequences of long-term intravenous self-administration of MDMA and its enantiomers by rhesus monkeys. Neuropsychopharmacology 29:1270–1281

    CAS  PubMed  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR et al (1996) Presynaptic monoamine vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884

    CAS  PubMed  Google Scholar 

  • Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279

    CAS  PubMed  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR et al (2008) Imaging VMAT2 in Parkinson’s disease with [F-18]AV-133. J Nucl Med 49:5P

    Google Scholar 

  • Gasnier B (2004) The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 447:756–759

    CAS  PubMed  Google Scholar 

  • Gilman S, Frey KA, Koeppe RA et al (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40:885–892

    CAS  PubMed  Google Scholar 

  • Gilman S, Koeppe RA, Chervin RD et al (2003) REM sleep behavior disorder is related to striatal monoaminergic deficit in MSA. Neurology 61:29–34

    CAS  PubMed  Google Scholar 

  • Gilman S, Koeppe RA, Little R et al (2004) Striatal monoamine terminals in Lewy body dementia and Alzheimer’s disease. Ann Neurol 55:774–780

    PubMed  Google Scholar 

  • Gonzalez AM, Walther D, Pazos A et al (1994) Synaptic vesicular monoamine transporter expression: distribution and pharmacologic profile. Mol Brain Res 22:219–226

    CAS  PubMed  Google Scholar 

  • Goswami R, Kung M-P, Ponde D et al (2006) Fluoroalkyl derivatives of dihydrotetrabenazine as PET imaging agents targeting vesicular monoamine transporters. Nucl Med Biol 33:685–694

    CAS  PubMed  Google Scholar 

  • Hostetler ED, Patel S, Guenther I et al (2007) Characterization of a novel F-18 labeled radioligand for VMAT2. J Label Compd Radiopharm 50:S330

    Google Scholar 

  • Johanson C-E, Frey KA, Lundahl LH et al (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berl) 185:327–338

    CAS  Google Scholar 

  • Jewett DM, Kilbourn MR, Lee LC (1997) A simple synthesis of [11C]dihydrotetrabenazine. Nucl Med Biol 24:197–199

    CAS  PubMed  Google Scholar 

  • Kankanamalage K, Amarasinghe D, Rishel M et al (2009) Fluorinated dihydrotetrabenazine ether imaging agents and probes. US Patent 2009/0110636 A1

    Google Scholar 

  • Kemmerer ES, Desmond TJ, Albin RL et al (2003) Treatment effects on nigrostriatal projection integrity in partial 6-OHDA lesions: comparison of L-DOPA and pramipexole. Exp Neurol 183:81–86

    CAS  PubMed  Google Scholar 

  • Kilbourn M, Sherman P (1997) In vivo binding of (+)-α-[3H]dihydrotetrabenazine to the vesicular monoamine transporter of rat brain: bolus vs. equilibrium studies. Eur J Pharmacol 331:161–168

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, DaSilva JN, Frey KA et al (1993) In vivo imaging of vesicular monoamine transporters in human brain using [11C]tetrabenazine and positron emission tomography. J Neurochem 60:2315–2318

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, Sherman PS, Abbott LC (1995a) Mutant mouse strains as models for in vivo radiotracer evaluations: [11C]methoxytetrabenazines ([11C]MTBZ) in tottering mice. Nucl Med Biol 22:565–567

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, Lee L, Vander Borght T et al (1995b) Binding of α-dihydrotetrabenazine to the vesicular monoamine transporter is stereospecific. Eur J Pharmacol 278:249–252

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, Frey KA, Vander Borght T et al (1996) Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters. Nucl Med Biol 23:467–471

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, Lee LC, Jewett DM et al (1997) The absolute configuration of (+)-α-dihydrotetrabenazine, an active metabolite of tetrabenazine. Chirality 9:59–62

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, Kuszpit K, Sherman P et al (2000) Rapid and differential losses of in vivo dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) radioligand binding in MPTP-treated mice. Synapse 35:250–255

    CAS  PubMed  Google Scholar 

  • Kilbourn MR, Hockley B, Lee L et al (2007) Pharmacokinetics of [18F]fluoroalkyl derivatives of dihydrotetrabenazine (DTBZ) in rat and monkey brain. Nucl Med Biol 34:233–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilbourn MR, Butch ER, Desmond T et al (2008) Dopamine depletion increases in vivo [11C]DTBZ binding in awake rat brain. Neuroimage 41(Suppl 2):T54

    Google Scholar 

  • Kilbourn MR, Butch ER, Desmond T et al (2010) Dopamine depletion increases in vivo [11C]dihydrotetrabenazine ([11C]DTBZ) binding in rat striatum. Nucl Med Biol 37:3–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koeppe RA, Frey KA, Vander Borght TM et al (1996) Kinetic evaluation of [11C]dihydrotetrabenazine by dynamic PET: measurement of the vesicular monoamine transporter. J Cereb Blood Flow Metab 16:1288–1299

    CAS  PubMed  Google Scholar 

  • Koeppe RA, Frey KA, Kume A et al (1997) Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)-α-[11C]dihydrotetrabenazine (DTBZ) and PET. J Cereb Blood Flow Metab 17:919–931

    CAS  PubMed  Google Scholar 

  • Koeppe RA, Frey KA, Kuhl DE et al (1999) Assessment of extrastriatal vesicular monoamine transporter binding site density using stereoisomers of [11C]dihydrotetrabenazine. J Cereb Blood Flow Metab 19:1376–1384

    CAS  PubMed  Google Scholar 

  • Koeppe RA, Gilman S, Junck L et al (2008) Differentiating Alzheimer’s disease from dementia with Lewy bodies and Parkinson’s disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimers Dement 4:S67–S76

    PubMed  Google Scholar 

  • Kumar A, Mann S, Sossi V et al (2003) [11C]DTBZ-PET correlates of levodopa responses in asymmetric Parkinson’s disease. Brain 126:2648–2655

    PubMed  Google Scholar 

  • Kuhl DE, Koeppe RA, Fessler JA et al (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 53:405–410

    Google Scholar 

  • Kung M-P, Canney DJ, Frederick D et al (1994) Binding of 125I-iodovinyltetrabenazine to CNS vesicular monoamine transport sites. Synapse 18:225–232

    CAS  PubMed  Google Scholar 

  • Kung M-P, Hou C, Goswami R et al (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 34:239–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kung M-P, Lieberman BP, Zhuang Z-P et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CS, Samii A, Sossi V et al (2000) In vivo positron emission tomographic evidence for compensatory changes in synaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503

    CAS  PubMed  Google Scholar 

  • Lee CS, Schulzer M, de la Fuente-Fernandez R et al (2004) Lack of regional selectivity during the progression of Parkinson disease. Arch Neurol 61:1920–1925

    PubMed  Google Scholar 

  • Lee LC, Vander Borght T, Sherman PS, Frey KA, Kilbourn MR (1996) In vitro and in vivo studies of benzoisoquinoline ligands for the brain synaptic vesicle monoamine transporter. J Med Chem 39:191–196

    CAS  PubMed  Google Scholar 

  • Lin K-J, Lin W-Y, Hsieh C-J et al (2011) Optimal scanning time window for 18F-FP-(+)-DTBZ (18F-AV-133) summed uptake measurements. Nucl Med Biol 38:1149–1155

    CAS  PubMed  Google Scholar 

  • Martin W, Wieler M, Stoessl AJ et al (2008) Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson’s disease. Ann Neurol 63:388–394

    PubMed  Google Scholar 

  • Mehvar R, Jamali F, Watson MWB et al (1987) Pharmacokinetics of tetrabenazine and its major metabolite in man and rat. Drug Metab Dispos 12:250–255

    Google Scholar 

  • Miller GW, Erickson JD, Perez JT et al (1998) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156:138–148

    Google Scholar 

  • Miller GW, Wang YM, Gainetdinov RR et al (2001) Dopamine transporter and vesicular monoamine transporter knockout mice: implications for Parkinson’s disease. Methods Mol Med 62:179–190

    CAS  PubMed  Google Scholar 

  • Nandhagopal R, Kuramoto L, Schulzer M et al (2011) Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson’s disease. Brain 134:3290–3298

    PubMed  Google Scholar 

  • Naudon L, Leroux-Nicollet I, Raisman-Vozari R et al (1995) Time course of modifications elicited by reserpine on the density and mRNA synthesis of the vesicular monoamine transporter, and on the density of the membrane dopamine uptake complex. Synapse 21:29–36

    CAS  PubMed  Google Scholar 

  • Narendran R, Lopresti BJ, Martinez D et al (2012) In vivo evidence for low striatal vesicular monoamine transporter 2 (VMAT2) availability in cocaine abusers. Am J Psychiatry 169:55–63

    PubMed Central  PubMed  Google Scholar 

  • Okamura N, Villemagne VL, Drago J et al (2010) In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with (18)F-AV-133. J Nucl Med 51:223–228

    PubMed  Google Scholar 

  • Omote H, Miyaji T, Juge N et al (2011) Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry 50:5558–5565

    CAS  PubMed  Google Scholar 

  • Quinn GP, Shore PA, Brodie BB (1959) Biochemical and pharmacological studies of RO 1–9568 (Tetrabenazine), a non-indole tranquilizing agent with reserpine-like effects. J Pharmacol Exp Ther 127:103–109

    CAS  PubMed  Google Scholar 

  • Paek S-M, Kim N-J, Shin D et al (2010) A concise total synthesis of (+)-tetrabenazine and (+)-α-dihydrotetrabenazine. Chem Eur J 16:4623–4628

    CAS  PubMed  Google Scholar 

  • Petrou M, Koeppe R, Scott P et al (2012) PET imaging of the vesicular acetylcholine transporter. J Nucl Med 53:290

    Google Scholar 

  • Raffel DM, Koeppe RA, Little R et al (2006) PET measurement of cardiac and nigrostriatal denervation in Parkinsonian syndromes. J Nucl Med 47:1769–1777

    CAS  PubMed  Google Scholar 

  • Rhee S-W, Ryan KJ, Tanga MJ (2011) Synthesis of 3H-labeled tetrabenazine. J Label Compd Radiopharm 54:367–370

    CAS  Google Scholar 

  • Ricuarte GA, Mechan AO, Yuan J et al (2005) Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in striatum of adult nonhuman primates. J Pharmacol Exp Ther 315:91–98

    Google Scholar 

  • Rishel MJ, Amarasinghe KKD, Dinn SR et al (2009a) Asymmetric synthesis of tetrabenazine and dihydrotetrabenazine. J Org Chem 74:4001–4004

    CAS  PubMed  Google Scholar 

  • Rishel MJ, Johnson BF, Kankanamalage K et al (2009b) Alpha-fluoroalkyl dihydrotetrabenazine imaging agents and probes. US Patent 2009/0142276 A1

    Google Scholar 

  • Scherman D, Jaudon P, Henry JP (1981) Binding of a tetrabenazine derivative to the monoamine transporter of the chromaffin granule membrane. C R Seances Acad Sci III 293:221–224

    CAS  PubMed  Google Scholar 

  • Scherman D, Raisman R, Ploska A et al (1988) [3H]Dihydrotetrabenazine, a new in vitro monoaminergic probe for human brain. J Neurochem 50:1131–1136

    CAS  PubMed  Google Scholar 

  • Scherman D, Desnos C, Darchen F et al (1989) Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol 26:551–557

    CAS  PubMed  Google Scholar 

  • Schwartz K, Nachman R, Yossifoff M et al (2006) Cocaine, but not amphetamine, short term treatment elevates the density of rat brain vesicular monoamine transporter 2. J Neural Transm 114:427–430

    PubMed  Google Scholar 

  • Sievert MK, Hajipour AR, Ruoho AE (2007) Specific derivatization of the vesicular monoamine transporter with novel carrier-free radioiodinated reserpine and tetrabenazine photoaffinity labels. Anal Biochem 367:68–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sossi V, Dinelle K, Topping GJ (2009) Dopamine transporter relation to levodopa-derived synaptic dopamine in a rat model of Parkinson’s: an in vivo imaging study. J Neurochem 109:85–92

    CAS  PubMed  Google Scholar 

  • Sossi V, Dinelle K, Schulzer M (2010) Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release. Eur J Nucl Med Mol Imaging 37:2364–2370

    CAS  PubMed  Google Scholar 

  • Taylor SF, Koeppe RA, Tandon R et al (2000) In vivo measurement of the vesicular monoamine transporter in schizophrenia. Neuropsychopharmacology 23:667–675

    CAS  PubMed  Google Scholar 

  • Thompson CM, Davis E, Carrigan CN et al (2005) Inhibitor of the glutamate vesicular transporter (VGLUT). Curr Med Chem 12:2041–2056

    CAS  PubMed  Google Scholar 

  • Tian L, Karimi M, Loftin SK et al (2012) No differential regulation of dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) binding in a primate model of Parkinson’s disease. PLoS one 7(2):e31439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tong J, Wilson AA, Boileau I et al (2008) Dopamine modulating drugs influence striatal (+)-[11C]DTBZ binding in rats: VMAT2 binding is sensitive to changes in vesicular dopamine concentration. Synapse 62:873–876

    CAS  PubMed  Google Scholar 

  • Tong J, Boileau I, Furakawa Y et al (2011) Distribution of vesicular monoamine transporter 2 protein in human brain; implications for brain imaging studies. J Cereb Blood Flow Metab 31:2065–2075

    CAS  PubMed  Google Scholar 

  • Tridgett R, Turtle R, Johnston G (2012) Dihydrotetrabenazines and pharmaceutical compositions containing them. US Patent 2008/0108645 A1

    Google Scholar 

  • Troiano AR, Schulzer M, De La Fuente-Fernandez R et al (2010) Dopamine transporter PET in normal aging: dopamine transporter decline and its possible role in preservation of motor function. Synapse 64:146–151

    CAS  PubMed  Google Scholar 

  • Tsao H-H, Lin K-J, Juang J-H et al (2010) Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenazine (AV-133) to the vesicular transporter type 2 in rats. Nucl Med Biol 37:413–419

    CAS  PubMed  Google Scholar 

  • Vander Borght TM, Kilbourn MR, Desmond TJ et al (1995a) The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 294:577–583

    CAS  PubMed  Google Scholar 

  • Vander Borght TM, Kilbourn MR, Koeppe RA et al (1995b) In vivo imaging of the brain vesicular monoamine transporter. J Nucl Med 36:2252–2260

    CAS  PubMed  Google Scholar 

  • Vander Borght TM, Sima AAF, Kilbourn MR et al (1995c) [3H]Methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 68:955–962

    CAS  PubMed  Google Scholar 

  • Varone A, Jahan M, Toth M et al (2012) PET imaging of VMAT2 with the novel radioligand [18F]FE-DTBZ-d4 in non human primates: comparison with [11C]DTBZ and [18F]FE-DTBZ. J Cereb Blood Flow Metab 32(suppl 1):S113–S114

    Google Scholar 

  • Villemagne VL, Okamura N, Pejoska S et al (2011) In vivo assessment of vesicular monoamine transporter type 2 in dementia with lewy bodies and Alzheimer disease. Arch Neurol 68:905–912

    PubMed  Google Scholar 

  • Villemagne VL, Okamura N, Pejoska S et al (2012) Differential diagnosis in Alzheimer’s disease and dementia with Lewy bodies via VMAT2 and amyloid imaging. Neurodegener Dis 10:161–165

    CAS  PubMed  Google Scholar 

  • Vilpoux C, Leroux-Nicollet I, Naudon L et al (2000) Reserpine or chronic paroxetine treatments do not modify the vesicular monoamine transporter 2 expression in serotonin-containing regions of the rat brain. Neuropharmacology 39:1075–1082

    CAS  PubMed  Google Scholar 

  • Wilson JM, Kish SJ (1996) The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. J Neurosci 16:3507–3510

    CAS  PubMed  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI et al (1996a) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    CAS  PubMed  Google Scholar 

  • Wilson JM, Levey AI, Bergeron C et al (1996b) Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Ann Neurol 40:428–439

    CAS  PubMed  Google Scholar 

  • Wimalasena K (2010) Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31:483–519

    PubMed Central  PubMed  Google Scholar 

  • Yao Z, Wei X, Wu X et al (2011) Preparation and evaluation of tetrabenazine enantiomers and all eight stereoisomers of dihydrotetrabenazine as VMAT2 inhibitors. Eur J Med Chem 46:1841–1848

    CAS  PubMed  Google Scholar 

  • Yu Q, Luo W, Deschamps J, Holloway HW et al (2010) Preparation and characterization of tetrabenazine enantiomers against vesicular monoamine transporter 2. ACS Med Chem Lett 1:105–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng G, Dwoskin LP, Deaciuc AG et al (2005) Lobelane analogues as novel ligands for the vesicular monoamine transporter-2. Bioorg Med Chem 13:3899–3909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng P, Lieberman BP, Choi SR et al (2011) Synthesis and biological evaluation of 3-alkyl-dihydrotetrabenazine derivatives as vesicular monoamine transporter-2 (VMAT2) ligands. Bioorg Med Chem Lett 21:3435–3438

    CAS  PubMed  Google Scholar 

  • Zhu L, Liu J, Kung HF (2009) Synthesis and evaluation of 2-amino-dihydrotetrabenazine derivatives as probes for imaging vesicular monoamine transporter-2. Bioorg Med Chem Lett 19:5026–5028

    CAS  PubMed  Google Scholar 

  • Zimmer L, Luxen A (2012) PET radiotracers for molecular imaging in the brain: past, present and future. Neuroimage 61:363–370

    CAS  PubMed  Google Scholar 

  • Zubieta J-K, Hugulet P, Ohl LE et al (2000) High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. Am J Psychiatry 157:1619–1628

    CAS  PubMed  Google Scholar 

  • Zubieta J-K, Taylor SF, Hugulet P et al (2001) Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry 49:110–116

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the efforts of a large number of individuals at the University of Michigan and University of Pennsylvania who participated in the development of VMAT2 radioligands for human PET studies and in particular the advice, support, encouragement, and cooperation of Drs. Kirk Frey, Robert Koeppe, David Kuhl, and Hank Kung. This work was supported by a grant from the National Institutes of Health NS-15655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Kilbourn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kilbourn, M.R. (2014). Radioligands for Imaging Vesicular Monoamine Transporters. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics