Skip to main content

Monoamine Oxidase A and Serotonin Transporter Imaging with Positron Emission Tomography

  • Chapter
  • First Online:
Book cover PET and SPECT of Neurobiological Systems

Abstract

Serotonin has a major role in neural circuits of mood regulation, substance abuse, and neurodevelopment (Azmitia, Neuropsychopharmacology 21:1S–45S, 1999). Although they differ in cellular and anatomical location, the two brain proteins most strongly implicated in influencing serotonin levels are monoamine oxidase A and the serotonin transporter (Blier and De Montigny, J Neurosci 3:1270–1278, 1983; Bel and Artigas, Eur J Pharmacol 229:101–103, 1992; Synapse 15:243–245, 1993; Naunyn Schmiedebergs Arch Pharmacol 351:475–482, 1995; Dreshfield et al., Neurochem Res 21:557–562, 1996; Moret and Briley, Eur J Pharmacol 295:189–197, 1996; Mathews et al., Soc Neurosci 30:624, 2000; Youdim et al., Nat Rev Neurosci 7:295–309, 2006). Coincidentally, there have been major advances in positron emission tomography (PET) radioligand development for these two targets over the past decade, and the application of these advances has greatly increased our knowledge about fundamental processes in many important, impactful conditions including major depressive disorder, early postpartum, cigarette smoking, aggressive behavior, antidepressant development, ecstasy abuse, obsessive-compulsive disorder, and seasonal affective disorder as reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alia-Klein N, Goldstein RZ, Kriplani A et al (2008) Brain monoamine oxidase a activity predicts trait aggression. J Neurosci 28:5099–5104

    CAS  PubMed Central  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Anda RF, Williamson DF, Escobedo LG et al (1990) Depression and the dynamics of smoking. A national perspective. JAMA 264:1541–1545

    CAS  PubMed  Google Scholar 

  • Azmitia E (1999) Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology 21:1S–45S

    Google Scholar 

  • Bacher I, Houle S, Xu X et al (2011) Monoamine oxidase a binding in the prefrontal and anterior cingulate cortices during acute withdrawal from heavy cigarette smoking. Arch Gen Psychiatry 68:817–826

    CAS  PubMed  Google Scholar 

  • Barton DA, Esler MD, Dawood T et al (2008) Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry 65:38–46

    CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 229:101–103

    CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. Synapse 15:243–245

    CAS  PubMed  Google Scholar 

  • Bel N, Artigas F (1995) In vivo evidence for the reversible action of the monoamine oxidase inhibitor brofaromine on 5-hydroxytryptamine release in rat brain. Naunyn Schmiedebergs Arch Pharmacol 351:475–482

    CAS  PubMed  Google Scholar 

  • Benmansour S, Cecchi M, Morilak D et al (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density and mRNA level. J Neurosci 19:10494–10501

    CAS  PubMed  Google Scholar 

  • Bergstrom M, Westerberg G, Kihlberg T et al (1997a) Synthesis of some 11C-labelled MAO-A inhibitors and their in vivo uptake kinetics in rhesus monkey brain. Nucl Med Biol 24:381–388

    CAS  PubMed  Google Scholar 

  • Bergstrom M, Westerberg G, Langstrom B (1997b) 11C-harmine as a tracer for monoamine oxidase A (MAO-A): in vitro and in vivo studies. Nucl Med Biol 24:287–293

    CAS  PubMed  Google Scholar 

  • Bergstrom M, Westerberg G, Nemeth G et al (1997c) MAO-A inhibition in brain after dosing with esuprone, moclobemide and placebo in healthy volunteers: in vivo studies with positron emission tomography. Eur J Clin Pharmacol 52:121–128

    CAS  PubMed  Google Scholar 

  • Bhagwagar Z, Murthy N, Selvaraj S et al (2007) 5-HTT binding in recovered depressed patients and healthy volunteers: a positron emission tomography study with [11C]DASB. Am J Psychiatry 164:1858–1865

    PubMed  Google Scholar 

  • Blakely R, Ramamoorthy S, Qian Y et al (1997) Regulation of antidepressant-sensitive serotonin transporters. In: Reith M (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa NJ, pp 29–72

    Google Scholar 

  • Blier P, De Montigny C (1983) Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat. J Neurosci 3:1270–1278

    CAS  PubMed  Google Scholar 

  • Blier P, Galzin AM, Langer SZ (1989) Diurnal variation in the function of serotonin terminals in the rat hypothalamus. J Neurochem 52:453–459

    CAS  PubMed  Google Scholar 

  • Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bottlaender M, Valette H, Delforge J et al (2010) In vivo quantification of monoamine oxidase A in baboon brain: a PET study using [11C]befloxatone and the multi-injection approach. J Cereb Blood Flow Metab 30:792–800

    CAS  PubMed  Google Scholar 

  • Breslau N, Peterson EL, Schultz LR et al (1998) Major depression and stages of smoking. A longitudinal investigation. Arch Gen Psychiatry 55:161–166

    CAS  PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, London ED et al (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brucke T, Kornhuber J, Angelberger P et al (1993) SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. J Neural Transm Gen Sect 94:137–146

    CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO et al (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580

    CAS  PubMed  Google Scholar 

  • Buchert R, Schulze O, Wilke F et al (2006) Is correction for age necessary in SPECT or PET of the central serotonin transporter in young, healthy adults? J Nucl Med 47:38–42

    CAS  PubMed  Google Scholar 

  • Buck A, Gucker PM, Schonbachler RD et al (2000) Evaluation of serotonergic transporters using PET and [11C](+)McN-5652: assessment of methods. J Cereb Blood Flow Metab 20:253–262

    CAS  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenetic architecture of human aggression. Trends Neurosci 31:120–129

    CAS  PubMed  Google Scholar 

  • Cannon DM, Ichise M, Rollis D et al (2007) Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry 62:870–877

    CAS  PubMed  Google Scholar 

  • Carey MP, Kalra DL, Carey KB et al (1993) Stress and unaided smoking cessation: a prospective investigation. J Consult Clin Psychol 61:831–838

    CAS  PubMed  Google Scholar 

  • Carlsson A, Svennerholm L, Winblad B (1980) Seasonal and circadian monoamine variations in human brains examined post mortem. Acta Psychiatr Scand Suppl 280:75–85

    CAS  PubMed  Google Scholar 

  • Carroll FI, Kotian P, Dehghani A et al (1995) Cocaine and 3 beta-(4′-substituted phenyl)tropane-2 beta-carboxylic acid ester and amide analogues. New high-affinity and selective compounds for the dopamine transporter. J Med Chem 38:379–388

    CAS  PubMed  Google Scholar 

  • Cases O, Vitalis T, Seif I et al (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16:297–307

    CAS  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    CAS  PubMed  Google Scholar 

  • Catafau AM, Perez V, Penengo MM et al (2005) SPECT of serotonin transporters using 123I-ADAM: optimal imaging time after bolus injection and long-term test-retest in healthy volunteers. J Nucl Med 46:1301–1309

    CAS  PubMed  Google Scholar 

  • Chalon S, Tarkiainen J, Garreau L et al (2003) Pharmacological characterization of N, N-dimethyl-2-(2-amino-4-methylphenyl thio)benzylamine as a ligand of the serotonin transporter with high affinity and selectivity. J Pharmacol Exp Ther 304:81–87

    CAS  PubMed  Google Scholar 

  • Choi SR, Hou C, Oya S et al (2000) Selective in vitro and in vivo binding of [125I]ADAM to serotonin transporters in rat brain. Synapse 38:403–412

    CAS  PubMed  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK et al (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    CAS  PubMed  Google Scholar 

  • Cortes R, Soriano E, Pazos A et al (1988) Autoradiography of antidepressant binding sites in the human brain: localization using [3H]imipramine and [3H]Paroxetine. Neuroscience 27:473–496

    CAS  PubMed  Google Scholar 

  • Cosgrove KP, Batis J, Bois F et al (2009) beta2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry 66:666–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curet O, Damoiseau-Ovens G, Sauvage C et al (1998) Preclinical profile of befloxatone, a new reversible MAO-A inhibitor. J Affect Disord 51:287–303

    CAS  PubMed  Google Scholar 

  • Dewar KM, Grondin L, Carli M et al (1992) [3H]paroxetine binding and serotonin content of rat cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region following p-chlorophenylalanine and p-chloroamphetamine treatment. J Neurochem 58:250–257

    CAS  PubMed  Google Scholar 

  • Dolle F, Valette H, Bramoulle Y et al (2003) Synthesis and in vivo imaging properties of [11C]befloxatone: a novel highly potent positron emission tomography ligand for mono-amine oxidase-A. Bioorg Med Chem Lett 13:1771–1775

    CAS  PubMed  Google Scholar 

  • Donnelly CH, Murphy DL (1977) Substrate- and inhibitor-related characteristics of human platelet monoamine oxidase. Biochem Pharmacol 26:853–858

    CAS  PubMed  Google Scholar 

  • Dreshfield LJ, Wong DT, Perry KW et al (1996) Enhancement of fluoxetine-dependent increase of extracellular serotonin (5-HT) levels by (-)-pindolol, an antagonist at 5-HT1A receptors. Neurochem Res 21:557–562

    CAS  PubMed  Google Scholar 

  • Erlandsson K, Sivananthan T, Lui D et al (2005) Measuring SSRI occupancy of SERT using the novel tracer [123I]ADAM: a SPECT validation study. Eur J Nucl Med Mol Imaging 32:1329–1336

    CAS  PubMed  Google Scholar 

  • Erritzoe D, Frokjaer VG, Holst KK et al (2011) In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) and hallucinogen users. Arch Gen Psychiatry 68:562–576

    PubMed  Google Scholar 

  • Fava GA, Ruini C, Rafanelli C et al (2004) Six-year outcome of cognitive behavior therapy for prevention of recurrent depression. Am J Psychiatry 161:1872–1876

    PubMed  Google Scholar 

  • Fazel S, Danesh J (2002) Serious mental disorder in 23000 prisoners: a systematic review of 62 surveys. Lancet 359:545–550

    PubMed  Google Scholar 

  • Finberg J (2012) Role of the organic cation transporter (OCT-3) and monoamine oxidase types A and B in the metabolism of dopamine derived from L-DOPA in rat striatum depleted of dopaminergic and serotonergic afferent inputs. Tenth International Catecholamine Symposium. Pacific Grove, 82

    Google Scholar 

  • First M, Spitzer R, Williams J et al (1995) Structured clinical interview for DSM-IV axis I disorders, patient edition (SCID-P), version 2. Biometrics Research, New York

    Google Scholar 

  • Fowler JS, MacGregor RR, Wolf AP et al (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235:481–485

    CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ et al (1996) Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci U S A 93:14065–14069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frank E, Kupfer DJ, Perel JM et al (1990) Three-year outcomes for maintenance therapies in recurrent depression. Arch Gen Psychiatry 47:1093–1099

    CAS  PubMed  Google Scholar 

  • Frankle WG, Lombardo I, New AS et al (2005) Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatry 162:915–923

    PubMed  Google Scholar 

  • Freis ED (1954) Mental depression in hypertensive patients treated for long periods with large doses of reserpine. N Engl J Med 251:1006–1008

    CAS  PubMed  Google Scholar 

  • Garvey AJ, Bliss RE, Hitchcock JL et al (1992) Predictors of smoking relapse among self-quitters: a report from the Normative Aging Study. Addict Behav 17:367–377

    CAS  PubMed  Google Scholar 

  • Ginovart N, Wilson AA, Meyer JH et al (2001) Positron emission tomography quantification of [11C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab 21:1342–1353

    CAS  PubMed  Google Scholar 

  • Ginovart N, Meyer JH, Boovariwala A et al (2006) Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase-A in the human brain. J Cereb Blood Flow Metab 26:330–344

    CAS  PubMed  Google Scholar 

  • Graham D, Tahraoui L, Langer SZ (1987) Effect of chronic treatment with selective monoamine oxidase inhibitors and specific 5-hydroxytryptamine uptake inhibitors on [3H]paroxetine binding to cerebral cortical membranes of the rat. Neuropharmacology 26:1087–1092

    CAS  PubMed  Google Scholar 

  • Halldin C, Lundberg J, Sovago J et al (2005) [11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse 58:173–183

    CAS  PubMed  Google Scholar 

  • Hauptmann N, Shih JC (2001) 2-Naphthylamine, a compound found in cigarette smoke, decreases both monoamine oxidase A and B catalytic activity. Life Sci 68:1231–1241

    CAS  PubMed  Google Scholar 

  • Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386

    CAS  PubMed  Google Scholar 

  • Hesse S, Stengler K, Regenthal R et al (2011) The serotonin transporter availability in untreated early-onset and late-onset patients with obsessive-compulsive disorder. Int J Neuropsychopharmacol 14:606–617

    CAS  PubMed  Google Scholar 

  • Hesse S, Brust P, Mäding P et al (2012) Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. Eur J Nucl Med Mol Imaging 39:1001–1011

    CAS  PubMed  Google Scholar 

  • Holschneider DP, Kumazawa T, Chen K et al (1998) Tissue-specific effects of estrogen on monoamine oxidase A and B in the rat. Life Sci 63:155–160

    CAS  PubMed  Google Scholar 

  • Houle S, Ginovart N, Hussey D et al (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27:1719–1722

    CAS  PubMed  Google Scholar 

  • Ichise M, Liow JS, Lu JQ et al (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23:1096–1112

    PubMed  Google Scholar 

  • Ikoma Y, Suhara T, Toyama H et al (2002) Quantitative analysis for estimating binding potential of the brain serotonin transporter with [11C]McN5652. J Cereb Blood Flow Metab 22:490–501

    CAS  PubMed  Google Scholar 

  • Jarkas N, Votaw JR, Voll RJ et al (2005) Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters. Nucl Med Biol 32:211–224

    CAS  PubMed  Google Scholar 

  • Johnson S, Stockmeier CA, Meyer JH et al (2011) The reduction of R1, a novel repressor protein for monoamine oxidase a, in major depressive disorder. Neuropsychopharmacology 36:2139–2148

    CAS  PubMed  Google Scholar 

  • Kalbitzer J, Erritzoe D, Holst KK et al (2010) Seasonal changes in brain serotonin transporter binding in short serotonin transporter linked polymorphic region-allele carriers but not in long-allele homozygotes. Biol Psychiatry 67:1033–1039

    CAS  PubMed  Google Scholar 

  • Kenford SL, Smith SS, Wetter DW et al (2002) Predicting relapse back to smoking: contrasting affective and physical models of dependence. J Consult Clin Psychol 70:216–227

    PubMed  Google Scholar 

  • Kent JM, Coplan JD, Lombardo I et al (2002) Occupancy of brain serotonin transporters during treatment with paroxetine in patients with social phobia: a positron emission tomography study with 11C McN 5652. Psychopharmacology (Berl) 164:341–348

    CAS  Google Scholar 

  • Kim-Cohen J, Caspi A, Taylor A et al (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913

    CAS  PubMed  Google Scholar 

  • Kish SJ, Furukawa Y, Chang LJ et al (2005) Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol 32:123–128

    CAS  PubMed  Google Scholar 

  • Kish SJ, Lerch J, Furukawa Y et al (2010) Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[11C]DASB and structural brain imaging study. Brain 133:1779–1797

    PubMed  Google Scholar 

  • Krishnan KR (2002) Biological risk factors in late life depression. Biol Psychiatry 52:185–192

    PubMed  Google Scholar 

  • Kuikka JT, Bergstrom KA, Vanninen E et al (1993) Initial experience with single-photon emission tomography using iodine-123-labelled 2 beta-carbomethoxy-3 beta-(4-iodophenyl) tropane in human brain. Eur J Nucl Med 20:783–786

    CAS  PubMed  Google Scholar 

  • Kung MP, Hou C, Oya S et al (1999) Characterization of [123I]IDAM as a novel single-photon emission tomography tracer for serotonin transporters. Eur J Nucl Med 26:844–853

    CAS  PubMed  Google Scholar 

  • Lambert GW, Reid C, Kaye DM et al (2002) Effect of sunlight and season on serotonin turnover in the brain. Lancet 360:1840–1842

    CAS  PubMed  Google Scholar 

  • Laruelle M, Vanisberg M-A, Maloteaux J-M (1988) Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry 24:299–309

    CAS  PubMed  Google Scholar 

  • Laruelle M, Giddings SS, Zea-Ponce Y et al (1994) Methyl 3 beta-(4-[125I]iodophenyl)tropane-2 beta-carboxylate in vitro binding to dopamine and serotonin transporters under “physiological” conditions. J Neurochem 62:978–986

    CAS  PubMed  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65

    CAS  PubMed  Google Scholar 

  • Law M, Tang JL (1995) An analysis of the effectiveness of interventions intended to help people stop smoking. Arch Intern Med 155:1933–1941

    CAS  PubMed  Google Scholar 

  • Lensch K, Fuchs G, Boning J et al (1987) A clinical study of the selective MAO-A-inhibitor moclobemide (Ro 11-1163): a comparison of 2 different dosages with particular reference to platelet MAO-activity and urinary MHPG-excretion. Int Clin Psychopharmacol 2:165–171

    CAS  PubMed  Google Scholar 

  • Leroy C, Bragulat V, Berlin I et al (2009) Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]befloxatone. J Clin Psychopharmacol 29:86–88

    CAS  PubMed  Google Scholar 

  • Lesch KP, Wolozin BL, Estler HC et al (1993a) Isolation of a cDNA encoding the human brain serotonin transporter. J Neural Transm Gen Sect 91:67–72

    CAS  PubMed  Google Scholar 

  • Lesch KP, Wolozin BL, Murphy DL et al (1993b) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem 60:2319–2322

    CAS  PubMed  Google Scholar 

  • Liotti M, Mayberg HS, McGinnis S et al (2002) Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am J Psychiatry 159:1830–1840

    PubMed  Google Scholar 

  • Luine VN, Khylchevskaya RI, McEwen BS (1975) Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Res 86:293–306

    CAS  PubMed  Google Scholar 

  • Lundberg J, Odano I, Olsson H et al (2005) Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med 46:1505–1515

    CAS  PubMed  Google Scholar 

  • Lundberg J, Halldin C, Farde L (2006) Measurement of serotonin transporter binding with PET and [11C]MADAM: a test-retest reproducibility study. Synapse 60:256–263

    CAS  PubMed  Google Scholar 

  • Lundberg J, Christophersen JS, Petersen KB et al (2007) PET measurement of serotonin transporter occupancy: a comparison of escitalopram and citalopram. Int J Neuropsychopharmacol 10:777–785

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Bondiolotti GP, Olasmaa M et al (1993) Estrogen modulation of catecholamine synthesis and monoamine oxidase A activity in the human neuroblastoma cell line SK-ER3. J Steroid Biochem Mol Biol 47:207–211

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Violani E, Villa F et al (1995) Estrogenic control of monoamine oxidase A activity in human neuroblastoma cells expressing physiological concentrations of estrogen receptor. Eur J Pharmacol 284:171–176

    CAS  PubMed  Google Scholar 

  • Magnusson A (2000) An overview of epidemiological studies on seasonal affective disorder. Acta Psychiatr Scand 101:176–184

    CAS  PubMed  Google Scholar 

  • Mann JJ, Stanley M (1984) Postmortem monoamine oxidase enzyme kinetics in the frontal cortex of suicide victims and controls. Acta Psychiatr Scand 69:135–139

    CAS  PubMed  Google Scholar 

  • Mathews T, Fedele D, Unger E et al (2000) Effects of serotonin transporter inactivation on extracellular 5-HT levels, in vivo microdialysis recovery, and MDMA-induced release of serotonin and dopamine in mouse striatum. Soc Neurosci 30:624, Abstracts

    Google Scholar 

  • Mathews TA, Fedele DE, Coppelli FM et al (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140:169–181

    CAS  PubMed  Google Scholar 

  • Matsumoto R, Ichise M, Ito H et al (2010) Reduced serotonin transporter binding in the insular cortex in patients with obsessive-compulsive disorder: a [11C]DASB PET study. Neuroimage 49:121–126

    PubMed  Google Scholar 

  • McCann UD, Szabo Z, Seckin E et al (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology 30:1741–1750

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCann UD, Szabo Z, Vranesic M et al (2008) Positron emission tomographic studies of brain dopamine and serotonin transporters in abstinent (+/-)3,4-methylenedioxymethamphetamine (“ecstasy”) users: relationship to cognitive performance. Psychopharmacology (Berl) 200:439–450

    CAS  Google Scholar 

  • Mejia JM, Ervin FR, Baker GB et al (2002) Monoamine oxidase inhibition during brain development induces pathological aggressive behavior in mice. Biol Psychiatry 52:811–821

    CAS  PubMed  Google Scholar 

  • Meyer JH (2007) Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 32:86–102

    PubMed Central  PubMed  Google Scholar 

  • Meyer JH (2008) Applying neuroimaging ligands to study major depressive disorder. Semin Nucl Med 38:287–304

    PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Ginovart N et al (2001) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry 158:1843–1849

    CAS  PubMed  Google Scholar 

  • Meyer JH, Houle S, Sagrati S et al (2004a) Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry 61:1271–1279

    CAS  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S et al (2004b) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

    PubMed  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A et al (2006) Elevated monoamine oxidase A levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216

    CAS  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S et al (2009) Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry 66:1304–1312

    PubMed  Google Scholar 

  • Moret C, Briley M (1996) Effects of acute and repeated administration of citalopram on extracellular levels of serotonin in rat brain. Eur J Pharmacol 295:189–197

    CAS  PubMed  Google Scholar 

  • Murphy DL, Lipper S, Slater S et al (1979) Selectivity of clorgyline and pargyline as inhibitors of monoamine oxidases A and B in vivo in man. Psychopharmacology (Berl) 62:129–132

    CAS  Google Scholar 

  • Nelson DL, Herbet A, Glowinski J et al (1979) [3H]Harmaline as a specific ligand of MAO A–II. Measurement of the turnover rates of MAO A during ontogenesis in the rat brain. J Neurochem 32:1829–1836

    CAS  PubMed  Google Scholar 

  • Nye JA, Votaw JR, Jarkas N et al (2008) Compartmental modeling of 11C-HOMADAM binding to the serotonin transporter in the healthy human brain. J Nucl Med 49:2018–2025

    PubMed Central  PubMed  Google Scholar 

  • O’Hara MW, Swain A (1996) Rates and risk of postpartum depression – a meta analysis. Int Rev Psychiatry 8:37–54

    Google Scholar 

  • O’Hara MW, Schlechte JA, Lewis DA et al (1991) Prospective study of postpartum blues. Biologic and psychosocial factors. Arch Gen Psychiatry 48:801–806

    PubMed  Google Scholar 

  • Ordway GA, Farley JT, Dilley GE et al (1999) Quantitative distribution of monoamine oxidase A in brainstem monoamine nuclei is normal in major depression. Brain Res 847:71–79

    CAS  PubMed  Google Scholar 

  • Oya S, Choi SR, Hou C et al (2000) 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. Nucl Med Biol 27:249–254

    CAS  PubMed  Google Scholar 

  • Parsey RV, Kegeles LS, Hwang DR et al (2000) In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652. J Nucl Med 41:1465–1477

    CAS  PubMed  Google Scholar 

  • Paterson LM, Tyacke RJ, Nutt DJ et al (2010) Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab 30:1682–1706

    CAS  PubMed  Google Scholar 

  • Piper ME, Smith SS, Schlam TR et al (2009) A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies. Arch Gen Psychiatry 66:1253–1262

    PubMed Central  PubMed  Google Scholar 

  • Pirker W, Asenbaum S, Kasper S et al (1995) beta-CIT SPECT demonstrates blockade of 5HT-uptake sites by citalopram in the human brain in vivo. J Neural Transm Gen Sect 100:247–256

    CAS  PubMed  Google Scholar 

  • Praschak-Rieder N, Wilson AA, Hussey D et al (2005) Effects of tryptophan depletion on the serotonin transporter in healthy humans. Biol Psychiatry 58:825–830

    CAS  PubMed  Google Scholar 

  • Praschak-Rieder N, Willeit M, Wilson AA et al (2008) Seasonal variation in human brain serotonin transporter binding. Arch Gen Psychiatry 65:1072–1078

    PubMed  Google Scholar 

  • Pratt L, Brody D (2010) Depression and smoking in the U.S. household population aged 20 and over, 2005-2008. NCHS Data Brief 34:1–8

    PubMed  Google Scholar 

  • Reimold M, Smolka MN, Zimmer A et al (2007) Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity – a [11C]DASB PET study. J Neural Transm 114:1603–1609

    CAS  PubMed  Google Scholar 

  • Robins LN, Helzer JE, Weissman MM et al (1984) Lifetime prevalence of specific psychiatric disorders in three sites. Arch Gen Psychiatry 41:949–958

    CAS  PubMed  Google Scholar 

  • Rommelspacher H, Meier-Henco M, Smolka M et al (2002) The levels of norharman are high enough after smoking to affect monoamine oxidase B in platelets. Eur J Pharmacol 441:115–125

    CAS  PubMed  Google Scholar 

  • Rovescalli AC, Brunello N, Riva M et al (1989) Effect of different photoperiod exposure on [3H]imipramine binding and serotonin uptake in the rat brain. J Neurochem 52:507–514

    CAS  PubMed  Google Scholar 

  • Ruhe HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359

    CAS  PubMed  Google Scholar 

  • Ruhe HG, Booij J, Reitsma JB et al (2009) Serotonin transporter binding with [123I]beta-CIT SPECT in major depressive disorder versus controls: effect of season and gender. Eur J Nucl Med Mol Imaging 36:841–849

    CAS  PubMed  Google Scholar 

  • Sacher J, Wilson A, Houle S et al (2010) Elevated brain monoamine oxidase A binding in early postpartum. Arch Gen Psychiatry 67:468–474

    PubMed  Google Scholar 

  • Sacher J, Houle S, Parkes J et al (2011) Monoamine oxidase A inhibitor occupancy during treatment of major depressive episodes with moclobemide or St. John’s wort: an [11C]-harmine PET study. J Psychiatry Neurosci 36:375–382

    PubMed Central  PubMed  Google Scholar 

  • Sacher J, Rabiner EA, Clark M et al (2012) Dynamic, adaptive changes in MAO-A binding after alterations in substrate availability: an in vivo [11C]-harmine positron emission tomography study. J Cereb Blood Flow Metab 32:443–446

    CAS  PubMed  Google Scholar 

  • Saura J, Kettler R, Da Prada M et al (1992) Quantitative enzyme radioautography with 3H-Ro 41–1049 and 3H-Ro 19–6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12:1977–1999

    CAS  PubMed  Google Scholar 

  • Saura J, Bleuel Z, Ulrich J et al (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70:755–774

    CAS  PubMed  Google Scholar 

  • Selvaraj S, Hoshi R, Bhagwagar Z et al (2009) Brain serotonin transporter binding in former users of MDMA (‘ecstasy’). Br J Psychiatry 194:355–359

    PubMed  Google Scholar 

  • Shank RP, Vaught JL, Pelley KA et al (1988) McN-5652: a highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247:1032–1038

    CAS  PubMed  Google Scholar 

  • Sharot T, Riccardi AM, Raio CM et al (2007) Neural mechanisms mediating optimism bias. Nature 450:102–105

    CAS  PubMed  Google Scholar 

  • Sherif F, Marcusson J, Oreland L (1991) Brain gamma-aminobutyrate transaminase and monoamine oxidase activities in suicide victims. Eur Arch Psychiatry Clin Neurosci 241:139–144

    CAS  PubMed  Google Scholar 

  • Soliman A, Bagby RM, Wilson AA et al (2011) Relationship of monoamine oxidase A binding to adaptive and maladaptive personality traits. Psychol Med 41:1051–1060

    CAS  PubMed  Google Scholar 

  • Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37:357–373

    PubMed  Google Scholar 

  • Suhara T, Takano A, Sudo Y et al (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60:386–391

    CAS  PubMed  Google Scholar 

  • Talbot PS, Frankle WG, Hwang DR et al (2005) Effects of reduced endogenous 5-HT on the in vivo binding of the serotonin transporter radioligand 11C-DASB in healthy humans. Synapse 55:164–175

    CAS  PubMed  Google Scholar 

  • Tao-Cheng JH, Zhou FC (1999) Differential polarization of serotonin transporters in axons versus soma-dendrites: an immunogold electron microscopy study. Neuroscience 94:821–830

    CAS  PubMed  Google Scholar 

  • Tauscher J, Pirker W, de Zwaan M et al (1999) In vivo visualization of serotonin transporters in the human brain during fluoxetine treatment. Eur Neuropsychopharmacol 9:177–179

    CAS  PubMed  Google Scholar 

  • Tom SM, Fox CR, Trepel C et al (2007) The neural basis of loss aversion in decision-making under risk. Science 315:515–518

    CAS  PubMed  Google Scholar 

  • Trivedi MH, Rush AJ, Wisniewski SR et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163:28–40

    PubMed  Google Scholar 

  • Tweedie DJ, Burke MD (1987) Metabolism of the beta-carbolines, harmine and harmol, by liver microsomes from phenobarbitone- or 3-methylcholanthrene-treated mice. Identification and quantitation of two novel harmine metabolites. Drug Metab Dispos 15:74–81

    CAS  PubMed  Google Scholar 

  • Urban NB, Girgis RR, Talbot PS et al (2012) Sustained recreational use of ecstasy is associated with altered pre and postsynaptic markers of serotonin transmission in neocortical areas: a PET study with [11C]DASB and [11C]MDL 100907. Neuropsychopharmacology 37:1465–1473

    CAS  PubMed  Google Scholar 

  • Vitalis T, Cases O, Callebert J et al (1998) Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 393:169–184

    CAS  PubMed  Google Scholar 

  • Weissman MM, Bland RC, Canino GJ et al (1994) The cross national epidemiology of obsessive compulsive disorder. The Cross National Collaborative Group. J Clin Psychiatry 55(Suppl):5–10

    PubMed  Google Scholar 

  • Wiesel FA, Raaflaub J, Kettler R (1985) Pharmacokinetics of oral moclobemide in healthy human subjects and effects on MAO-activity in platelets and excretion of urine monoamine metabolites. Eur J Clin Pharmacol 28:89–95

    CAS  PubMed  Google Scholar 

  • Wilson A, Schmidt M, Ginovart N et al (2000) Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, in vitro and ex vivo evaluation of [11C]-labelled 2-(phenylthio) araalkylamines. J Med Chem 43:3103–3110

    CAS  PubMed  Google Scholar 

  • Wilson AA, Ginovart N, Hussey D et al (2002) In vitro and in vivo characterisation of [11C]-DASB: a probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol 29509–515

    Google Scholar 

  • Wilson A, Meyer J, Garcia A et al (2003) Determination of the arterial input function of the MAO-A inhibitor [11C] harmine in human subjects. J Label Comp Radiopharm 46:S367

    Google Scholar 

  • World Health Organization (2008) The global burden of disease: 2004 update. Department of Health Statistics and Informatics, Information Evidence and Research Cluster, WHO, Switzerland

    Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    CAS  PubMed  Google Scholar 

  • Yu A, Yang J, Pawlyk AC et al (1995) Acute depletion of serotonin down-regulates serotonin transporter mRNA in raphe neurons. Brain Res 688:209–212

    CAS  PubMed  Google Scholar 

  • Zhou FC, Tao-Cheng JH, Segu L et al (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res 805:241–254

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, J.H. (2014). Monoamine Oxidase A and Serotonin Transporter Imaging with Positron Emission Tomography. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics