Skip to main content

Imaging Histamine Receptors Using PET and SPECT

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The histaminergic system contains four subtypes of G-protein-coupled receptors: H1R, H2R, H3R and H4R. In the central nervous system, they mediate the action of histamine in pituitary hormone secretion, wakefulness, motor and cognitive functions as well as in itch and nociception. Alterations in the cerebral histaminergic neurotransmission are associated with numerous neurological diseases, e.g. sleep/wake and eating disorders, epilepsy, neuropathic pain, neurodegeneration and neuroinflammation. Therefore, histamine receptors are a target of high interest, not only for therapy, but also for imaging and quantification using PET and SPECT. In addition to indirect flow and metabolism studies, this chapter provides a review of results of preclinical and clinical investigations with subtype-selective tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi N (2005) Cerebral ischemia and brain histamine. Brain Res Rev 50:275–286. doi:10.1016/j.brainresrev.2005.08.002

    CAS  PubMed  Google Scholar 

  • Airaksinen AJ, Jablonowski JA, van der Mey M et al (2006) Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand. Nucl Med Biol 33:801–810. doi:10.1016/j.nucmedbio.2006.05.008

    CAS  PubMed  Google Scholar 

  • Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199:183–189. doi:10.1016/j.bbr.2008.12.010

    CAS  PubMed  Google Scholar 

  • Anderson GD (2004) Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 63:S3–S8. doi:10.1212/WNL.63.10_suppl_4.S3

    CAS  PubMed  Google Scholar 

  • Apodaca R, Xiao W, Jablonoski JA (2003) Phenylalkynes. WO Patent WO/2003/050099

    Google Scholar 

  • Arrang J-M (2007) Histamine and schizophrenia. Int Rev Neurobiol 78:247–287. doi:10.1016/S0074-7742(06)78009-6

    CAS  PubMed  Google Scholar 

  • Ashworth S, Rabiner EA, Gunn RN et al (2010) Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J Nucl Med 51:1021–1029. doi:10.2967/jnumed.109.07175

    CAS  PubMed  Google Scholar 

  • Bao X, Lu S, Liow J-S et al (2012) Radiosynthesis and evaluation of an 18F-labeled positron emission tomography (PET) radioligand for brain histamine subtype-3 receptors based on a nonimidazole 2-aminoethylbenzofuran chemotype. J Med Chem 55:2406–2415. doi:10.1021/jm201690h

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraniuk JN (2012) Rise of the sensors: nociception and pruritus. Curr Allergy Asthma Rep 12:104–114. doi:10.1007/s11882-012-0245-8

    CAS  PubMed  Google Scholar 

  • Barbier AJ, Bradbury MJ (2007) Histaminergic control of sleep-wake cycles: recent therapeutic advances for sleep and wake disorders. CNS Neurol Disord Drug Targets 6:31–43. doi:http://dx.doi.org/10.2174/187152707779940790

    CAS  PubMed  Google Scholar 

  • Barger G, Dale HH (1910) CCLXV.-4-ß-Aminoethylglyoxaline (ß-Iminazolylethylamine) and the other active principles of Ergot. J Chem Soc Trans 97:2592–2595. doi:10.1039/CT9109702592

    CAS  Google Scholar 

  • Barocelli E, Ballabeni V (2003) Histamine in the control of gastric acid secretion: a topic review. Pharmacol Res 47:299–304. doi:http://dx.doi.org/10.1016/S1043-6618(03)00009-4

    CAS  PubMed  Google Scholar 

  • Bonaventure P, Letavic M, Dugovic C et al (2007) Histamine H3 receptor antagonists: from target identification to drug leads. Biochem Pharmacol 73:1084–1096. doi:10.1016/j.bcp.2006.10.031

    CAS  PubMed  Google Scholar 

  • Bongers G, de Esch I, Leurs R (2010) Molecular pharmacology of the four histamine receptors. Adv Exp Med Biol 709:11–19. doi:10.1007/978-1-4419-8056-4_2

    CAS  PubMed  Google Scholar 

  • BuczyÅ‚ko K (2009) Application of antihistamines in ear, nose and throat disorders. Post Dermatol Alergol XXVI:382–384

    Google Scholar 

  • Bytzer P (2002) H2 receptor antagonists and prokinetics in dyspepsia: a critical review. Gut 50:iv58–iv62. doi:10.1136/gut.50.suppl_4.iv58

    CAS  PubMed  Google Scholar 

  • Cai H, Mangner TJ, Muzik O et al (2012) Fully automated production of 11C-doxepin for PET imaging histamine H1 receptor. Mol Imaging Biol 14:546–552. doi:10.1007/s11307-011-0535-x

    PubMed  Google Scholar 

  • Champion S, Gross J, Robichaud AJ, Pimlott S (2011) Radiosynthesis of 123I-labelled benzimidazoles as novel single-photon emission computed tomography tracers for the histamine H3 receptor. J Label Compd Radiopharm 54:674–677. doi:10.1002/jlcr.1899

    CAS  Google Scholar 

  • Chang RS, Tran VT, Snyder SH (1979) Heterogeneity of histamine H1-receptors: species variations in [3H]mepyramine binding of brain membranes. J Neurochem 32:1653–1663. doi:10.1111/j.1471-4159.1979.tb02276.x

    CAS  PubMed  Google Scholar 

  • Chazot PL, Hann V, Wilson C et al (2001) Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport 12:259–262. doi:http://ovidsp.tx.ovid.com/sp-3.7.1b/ovidweb.cgi?&S=FPMCFPOCNDDDLFPCNCPKFALBNNCBAA00&Abstract=S.sh.18%7c1%7c1

    CAS  PubMed  Google Scholar 

  • Clitherow JW, Beswick P, Irving WJ et al (1996) Novel 1, 2, 4-oxadiazoles as potent and selective histamine H3 receptor antagonists. Bioorg Med Chem Lett 6:833–838. doi:10.1016/0960-894X(96)00122-9

    CAS  Google Scholar 

  • Connelly WM, Shenton FC, Lethbridge N et al (2009) The histamine H4 receptor is functionally expressed on neurons in the mammalian CNS. Br J Pharmacol 157:55–63. doi:10.1111/j.1476-5381.2009.00227.x

    CAS  PubMed  Google Scholar 

  • Cowart M, Faghih R, Curtis MP et al (2005) 4-(2-[2-(2(R)-methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile and related 2-aminoethylbenzofuran H3 receptor antagonists potently enhance cognition and attention. J Med Chem 48:38–55. doi:10.1021/jm040118g

    CAS  PubMed  Google Scholar 

  • Crouzel C (1990) Positron emitter labeling of ligands for receptor studies. Acta Radiol Suppl 374:43–46

    CAS  PubMed  Google Scholar 

  • Cunningham VJ, Rabiner EA, Slifstein M et al (2010) Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab 30:46–50. doi:10.1038/jcbfm.2009.190

    PubMed  Google Scholar 

  • Cusack B, Nelson A, Richelson E (1994) Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl) 114:559–565. doi:10.1007/BF02244985

    CAS  Google Scholar 

  • Dannals RF, Yanai K, Wilson AA et al (1989) Synthesis of radiotracers for studying histamine-1 receptors: carbon-11 labeled doxepin and pyrilamine. J Label Compd Radiopharm 26:213–214. doi:10.1002/jlcr.2580260196

    Google Scholar 

  • Del Rio R, Noubade R, Saligrama N et al (2012) Histamine H4 receptor optimizes T regulatory cell frequency and facilitates anti-inflammatory responses within the central nervous system. J Immunol 188:541–547. doi:10.4049/jimmunol.1101498

    PubMed Central  PubMed  Google Scholar 

  • Deng C, Weston-Green K, Huang X-F (2010) The role of histaminergic H1 and H3 receptors in food intake: a mechanism for atypical antipsychotic-induced weight gain? Prog Neuropsychopharmacol Biol Psychiatry 34:1–4. doi:10.1016/j.pnpbp.2009.11.009

    PubMed  Google Scholar 

  • Dogan AS, Catafau AM, Zhou Y et al (2001a) In vivo histamine H-1 receptor mapping in normal human brain using 11C-doxepin PET. Eur J Nucl Med Mol Imaging 28:973. doi:10.1007/BF02832651

    Google Scholar 

  • Dogan AS, Catafau AM, Zhou Y et al (2001b) In vivo cerebral histamine receptor occupancy of three antihistamine drugs: A 11C-doxepin PET study. Eur J Nucl Med Mol Imaging 28:974. doi:10.1007/BF02832651

    Google Scholar 

  • Duncan JS (1999) Positron emission tomography receptor studies in epilepsy. Rev Neurol 155:482–488. doi:RNE-07-1999-155-6-7-0000-0000-101019-ART58

    CAS  PubMed  Google Scholar 

  • Dunford PJ, Williams KN, Desai PJ et al (2007) Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 119:176–183. doi:10.1016/j.jaci.2006.08.034

    CAS  PubMed  Google Scholar 

  • Eckelman WC (1998) Sensitivity of new radiopharmaceuticals. Nucl Med Biol 25:169–173

    CAS  PubMed  Google Scholar 

  • Endou M, Yanai K, Sakurai E et al (2001) Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res 891:32–41. doi:http://dx.doi.org/10.1016/S0006-8993(00)03226-1

    CAS  PubMed  Google Scholar 

  • Esbenshade TA, Krueger KM, Miller TR et al (2003) Two novel and selective nonimidazole histamine H3 receptor antagonists A-304121 and A-317920: I. In vitro pharmacological effects. J Pharmacol Exp Ther 305:887–896. doi:10.1124/jpet.102.047183

    CAS  PubMed  Google Scholar 

  • Esbenshade TA, Fox GB, Cowart MD (2006) Histamine H3 receptor antagonists: preclinical promise for treating obesity and cognitive disorders. Mol Interv 6:77–88. doi:10.1124/mi.6.2.5

    CAS  PubMed  Google Scholar 

  • Esbenshade TA, Browman KE, Bitner RS et al (2008) The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol 154:1166–1181. doi:10.1038/bjp.2008.147

    CAS  PubMed  Google Scholar 

  • Ferreira R, Santos T, Gonçalves J et al (2012) Histamine modulates microglia function. J Neuroinflammation 9:90. doi:10.1186/1742-2094-9-90

    PubMed Central  PubMed  Google Scholar 

  • Funaki Y, Sato K, Kato M et al (2007) Evaluation of the binding characteristics of [18F]fluoroproxyfan in the rat brain for in vivo visualization of histamine H3 receptor. Nucl Med Biol 34:981–987. doi:10.1016/j.nucmedbio.2007.07.012

    CAS  PubMed  Google Scholar 

  • Galici R, Rezvani AH, Aluisio L et al (2011) JNJ-39220675, a novel selective histamine H3 receptor antagonist, reduces the abuse-related effects of alcohol in rats. Psychopharmacology (Berl) 214:829–841. doi:10.1007/s00213-010-2092-4

    CAS  Google Scholar 

  • Garner DM, Garfinkel PE (1979) The eating attitudes test: an index of the symptoms of anorexia nervosa. Psychol Med 9:273–279. doi:10.1017/S0033291700030762

    CAS  PubMed  Google Scholar 

  • Garner DM, Olmsted MP, Bohr Y, Garfinkel PE (1982) The eating attitudes test: psychometric features and clinical correlates. Psychol Med 12:871–878. doi:10.1017/S0033291700049163

    CAS  PubMed  Google Scholar 

  • Gemkow MJ, Davenport AJ, Harich S et al (2009) The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discov Today 14:509–515. doi:10.1016/j.drudis.2009.02.011

    CAS  PubMed  Google Scholar 

  • Gillman S, Gillard M, Strolin Benedetti M (2009) The concept of receptor occupancy to predict clinical efficacy: a comparison of second generation H1 antihistamines. Allergy Asthma Proc 30:366–376. doi:10.2500/aap.2009.30.3226

    CAS  PubMed  Google Scholar 

  • Gomez-Ramirez J, Ortiz J, Blanco I (2002) Presynaptic H3 autoreceptors modulate histamine synthesis through cAMP pathway. Mol Pharmacol 61:239–245. doi:10.1124/mol.61.1.239

    CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241. doi:10.1152/physrev.00043.2007

    CAS  PubMed  Google Scholar 

  • Hamill TG, Sato N, Jitsuoka M et al (2009) Inverse agonist histamine H3 receptor PET tracers labelled with carbon-11 or fluorine-18. Synapse 63:1122–1132. doi:10.1002/syn.20689

    CAS  PubMed  Google Scholar 

  • Higuchi M, Itoh M, Yanai K et al (1998) Chapter 31 – Brain mapping of the effects of aging on histamine H1 receptors in humans: a PET study with [11C] doxepin. In: Carson RE, Daube-Witherspoon ME, Herscovitch P (eds) Quantitative functional brain imaging with positron emission tomography. Academic, San Diego, pp 207–214

    Google Scholar 

  • Higuchi M, Yanai K, Okamura N et al (2000) Histamine H1 receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience 99:721–729. doi:10.1016/S0306-4522(00)00230-X

    CAS  PubMed  Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H et al (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    CAS  PubMed  Google Scholar 

  • Hsieh GC, Chandran P, Salyers AK et al (2010) H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav 95:41–50. doi:10.1016/j.pbb.2009.12.004

    CAS  PubMed  Google Scholar 

  • Hu W-W, Chen Z (2012) Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 3:238–247. doi:10.1021/cn200126p

    PubMed  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539. doi:10.1038/sj.jcbfm.9600493

    CAS  PubMed  Google Scholar 

  • Isensee K, Amon M, Garlapati A et al (2009) Fluorinated non-imidazole histamine H3 receptor antagonists. Bioorg Med Chem Lett 19:2172–2175. doi:10.1016/j.bmcl.2009.02.110

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Yanai K, Iwata R et al (1996) Analysis of plasma metabolites during human PET studies with three receptor ligands, [11C] YM-09151-2, [11C] doxepin and [11C] pyrilamine. Tohoku J Exp Med 178:129–136. doi:10.1620/tjem.178.129

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Kawamura K, Wang W-F et al (2004) Evaluation of in vivo selective binding of [11C]doxepin to histamine H1 receptors in five animal species. Nucl Med Biol 31:493–502. doi:10.1016/j.nucmedbio.2003.11.005

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Kawamura K, Yanai K, Hendrikse NH (2007) In vivo evaluation of P-glycoprotein modulation of 8 PET radioligands used clinically. J Nucl Med 48:81–87

    CAS  PubMed  Google Scholar 

  • Ito C (2004) The role of the central histaminergic system on schizophrenia. Drug News Perspect 17:383–387

    CAS  PubMed  Google Scholar 

  • Ito C (2009) Histamine H3-receptor inverse agonists as novel antipsychotics. Cent Nerv Syst Agents Med Chem 9:132–136

    CAS  PubMed  Google Scholar 

  • Ito C, Morisset S, Krebs MO et al (2000) Histamine H2 receptor gene variants: lack of association with schizophrenia. Mol Psychiatry 5:159–164. doi:10.1038/sj.mp.4000664

    CAS  PubMed  Google Scholar 

  • Iwabuchi K, Ito C, Kubota Y et al (2003) Neuroimaging of histamine H1-receptor in the schizophrenic human brain by positron emission tomography. Int Clin Psychopharmacol 18:180. doi:10.1097/00004850-200305000-00016

    Google Scholar 

  • Iwabuchi K, Ito C, Tashiro M et al (2005) Histamine H1 receptors in schizophrenic patients measured by positron emission tomography. Eur Neuropsychopharmacol 15:185–191. doi:10.1016/j.euroneuro.2004.10.001

    CAS  PubMed  Google Scholar 

  • Iwata R, Hatano K, Yanai K et al (1991) A semi-automated synthesis system for routine preparation of [11C]YM-09151-2 and [11C]pyrilamine from [11C]methyl iodide. Int J Radiat Appl Instrum Part A 42:202–205. doi:10.1016/0883-2889(91)90075-C

    CAS  Google Scholar 

  • Iwata R, Pascali C, Yuasa M et al (1992) On-line [11C]methylation using [11C]methyl iodide for the automated preparation of 11C-radiopharmaceuticals. Int J Radiat Appl Instrum Part A 43:1083–1088. doi:10.1016/0883-2889(92)90048-J

    CAS  Google Scholar 

  • Iwata R, Horváth G, Pascali C et al (2000) Synthesis of 3-[1H-imidazol-4-yl]propyl 4-[18F]fluorobenzyl ether ([18F]fluoroproxyfan): a potential radioligand for imaging histamine H3 receptors. J Label Compd Radiopharm 43:873–882. doi:10.1002/1099-1344(200008)43:9<873::AID-JLCR371>3.0.CO;2-A

    CAS  Google Scholar 

  • Iwata R, Pascali C, Bogni A et al (2002) A combined loop-SPE method for the automated preparation of [11C]doxepin. J Label Compd Radiopharm 45:271–280. doi:10.1002/jlcr.557

    CAS  Google Scholar 

  • Izumi N, Mizuguchi H, Umehara H et al (2008a) Analysis of disease-dependent sedative profiles of H(1)-antihistamines by large-scale surveillance using the visual analog scale. Methods Find Exp Clin Pharmacol 30:225–230

    CAS  PubMed  Google Scholar 

  • Izumi N, Mizuguchi H, Umehara H et al (2008b) Evaluation of efficacy and sedative profiles of H(1) antihistamines by large-scale surveillance using the visual analogue scale (VAS). Allergol Int 57:257–263. doi:10.2332/allergolint.O-07-525

    PubMed  Google Scholar 

  • Izzo AA, Costa M, Mascolo N, Capasso F (1998) The role of histamine H1, H2 and H3 receptors on enteric ascending synaptic transmission in the guinea pig ileum. J Pharmacol Exp Ther 287:952–957

    CAS  PubMed  Google Scholar 

  • Jablonowski JA, Grice CA, Chai W et al (2003) The first potent and selective non-imidazole human histamine H4 receptor antagonists. J Med Chem 46:3957–3960. doi:10.1021/jm0341047

    CAS  PubMed  Google Scholar 

  • Jadidi-Niaragh F, Mirshafiey A (2010) Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 59:180–189. doi:10.1016/j.neuropharm.2010.05.005

    CAS  PubMed  Google Scholar 

  • Jitsuoka M, Tsukahara D, Ito S et al (2008) Synthesis and evaluation of a spiro-isobenzofuranone class of histamine H3 receptor inverse agonists. Bioorg Med Chem Lett 18:5101–5106. doi:10.1016/j.bmcl.2008.07.125

    CAS  PubMed  Google Scholar 

  • Jucaite A, Takano A, Boström E et al (2013) AZD5213: a novel histamine H3 receptor antagonist permitting high daytime and low nocturnal H3 receptor occupancy, a PET study in human subjects. Int J Neuropsychopharmacol 6:1231–1239. doi:10.1017/S1461145712001411

    Google Scholar 

  • Jutel M, Blaser K, Akdis CA (2005) Histamine in allergic inflammation and immune modulation. Int Arch Allergy Immunol 137:82–92. doi:10.1159/000085108

    CAS  PubMed  Google Scholar 

  • Kanba S, Richelson E (1984) Histamine H1 receptors in human brain labelled with [3H]doxepin. Brain Res 304:1–7. doi:10.1016/0006-8993(84)90856-4

    CAS  PubMed  Google Scholar 

  • Kano M, Fukudo S, Tashiro A et al (2004) Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci 20:803–810. doi:10.1111/j.1460-9568.2004.03540.x

    PubMed  Google Scholar 

  • Karaki H, Ozaki H, Hori M et al (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49:157–230

    CAS  PubMed  Google Scholar 

  • Kato M, Tashiro M, Yoshizawa M et al (2009) Gender difference in histamine H1 receptors in the human brain: a human PET study. J Pharmacol Sci 109:281P

    Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi:10.1152/physrev.00011.2010

    CAS  PubMed  Google Scholar 

  • Kim SE, Szabo Z, Seki C et al (1999) Effect of tracer metabolism on PET measurement of [11C]pyrilamine binding to histamine H1 receptors. Ann Nucl Med 13:101–107. doi:10.1007/BF03164885

    CAS  PubMed  Google Scholar 

  • Kiss R, Keserű GM (2012) Histamine H4 receptor ligands and their potential therapeutic applications: an update. Expert Opin Ther Pat 22:205–221. doi:10.1517/13543776.2012.665447

    CAS  PubMed  Google Scholar 

  • Knigge U, Kjaer A, Jørgensen H, Warberg J (1998) H3 receptor modulation of neuroendocrine responses to histamine and stress. In: Leurs R, Timmerman H (eds) The histamine H3 receptor A target for new drugs. Elsevier, Amsterdam/New York, pp 41–58. doi:10.1016/S0165-7208(98)80024-X

  • Kubo N, Senda M, Ohsumi Y et al (2011) Brain histamine H1 receptor occupancy of loratadine measured by positron emission topography: comparison of H1 receptor occupancy and proportional impairment ratio. Hum Psychopharmacol 26:133–139. doi:10.1002/hup.1184

    CAS  PubMed  Google Scholar 

  • Lassen NA (1992) Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection of radioactive tracers. J Cereb Blood Flow Metab 12:709–716. doi:10.1038/jcbfm.1992.101

    CAS  PubMed  Google Scholar 

  • Lassen NA, Bartenstein PA, Lammertsma AA et al (1995) Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab 15:152–165. doi:10.1038/jcbfm.1995.17

    CAS  PubMed  Google Scholar 

  • Letavic MA, Aluisio L, Atack JR et al (2010) Pre-clinical characterization of aryloxypyridine amides as histamine H3 receptor antagonists: identification of candidates for clinical development. Bioorg Med Chem Lett 20:4210–4214. doi:10.1016/j.bmcl.2010.05.041

    CAS  PubMed  Google Scholar 

  • Leurs R, Timmerman H (1998) The histamine H3 receptor – a target for new drugs, vol 30, 1st edn. Elsevier, Amsterdam/New York, pp 1–291

    Google Scholar 

  • Leurs R, Bakker RA, Timmerman H, de Esch IJP (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4:107–120. doi:10.1038/nrd1631

    CAS  PubMed  Google Scholar 

  • Leurs R, Smits R, Mooijer M et al (2008) Synthesis and in-vivo evaluation of human histamine H4 receptor modulators [11C]JNJ7777120 and [11C]VUF10558 for monitoring inflammatory processes using PET. EHRS XXXVIIth annual meeting, Stockholm, P26:87

    Google Scholar 

  • Leurs R, Chazot PL, Shenton FC et al (2009) Molecular and biochemical pharmacology of the histamine H4 receptor. Br J Pharmacol 157:14–23. doi:10.1111/j.1476-5381.2009.00250.x

    CAS  PubMed  Google Scholar 

  • Lewis DY, Champion S, Dewar D et al (2010) Characterisation of novel histamine H3 receptor tracers for SPECT. Mol Imaging Biol 12(S1):S122. doi:10.1007/s11307-009-0251-y

  • Lim HD, van Rijn RM, Ling P et al (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314:1310–1321. doi:10.1124/jpet.105.087965

    CAS  PubMed  Google Scholar 

  • Lin J-S, Sergeeva OA, Haas HL (2011) Histamine H3 receptors and sleep-wake regulation. J Pharmacol Exp Ther 336:17–23. doi:10.1124/jpet.110.170134

    CAS  PubMed  Google Scholar 

  • Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18:157–169. doi:10.1016/j.euroneuro.2007.06.003

    CAS  PubMed  Google Scholar 

  • Logan J, Fowler JS, Volkow ND et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747. doi:10.1038/jcbfm.1990.127

    CAS  PubMed  Google Scholar 

  • Logan J, Fowler JS, Volkow ND et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840. doi:10.1097/00004647-199609000-00008

    CAS  PubMed  Google Scholar 

  • Logan J, Carruthers NI, Letavic MA et al (2012) Blockade of the brain histamine H3 receptor by JNJ-39220675: preclinical PET studies with [11C]GSK189254 in anesthetized baboon. Psychopharmacology (Berl) 223:447–455. doi:10.1007/s00213-012-2733-x

    Google Scholar 

  • Lourenco CM, Kenk M, Beanlands RS, DaSilva JN (2006) Increasing synaptic noradrenaline, serotonin and histamine enhances in vivo binding of phosphodiesterase-4 inhibitor (R)-[11C]rolipram in rat brain, lung and heart. Life Sci 79:356–364. doi:10.1016/j.lfs.2006.01.010

    CAS  PubMed  Google Scholar 

  • Lovenberg TW, Roland BL, Wilson SJ et al (1999) Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 55:1101–1107

    CAS  PubMed  Google Scholar 

  • Madsen JL, Graff J (2008) Effects of the H2-receptor antagonist ranitidine on gastric motor function after a liquid meal in healthy humans. Scand J Clin Lab Invest 68:681–684. doi:10.1080/00365510802047685

    CAS  PubMed  Google Scholar 

  • Mancama D, Arranz MJ, Munro J et al (2002) Investigation of promoter variants of the histamine 1 and 2 receptors in schizophrenia and clozapine response. Neurosci Lett 333:207–211. doi:http://dx.doi.org/10.1016/S0304-3940(02)00178-7

    CAS  PubMed  Google Scholar 

  • Marson CM (2011) Targeting the histamine H4 receptor. Chem Rev 111:7121–7156. doi:10.1021/cr900166w

    CAS  PubMed  Google Scholar 

  • Martinez-Mir MI, Pollard H, Moreau J et al (1990) Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526:322–327. doi:http://dx.doi.org/10.1016/0006-8993(90)91240-H

    CAS  PubMed  Google Scholar 

  • Masaki T, Yoshimatsu H (2006) The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol Sci 27:279–284. doi:10.1016/j.tips.2006.03.008

    CAS  PubMed  Google Scholar 

  • Masaki T, Yoshimatsu H (2010) Neuronal histamine and its receptors: implication of the pharmacological treatment of obesity. Curr Med Chem 17:4587–4592. doi:http://dx.doi.org/10.2174/092986710794182944

    CAS  PubMed  Google Scholar 

  • McDonald K, Trick L, Boyle J (2008) Sedation and antihistamines: an update. Review of inter-drug differences using proportional impairment ratios. Hum Psychopharmacol 23:555–570. doi:10.1002/hup.962

    PubMed  Google Scholar 

  • Medhurst AD, Atkins AR, Beresford IJ et al (2007) GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther 321:1032–1045. doi:10.1124/jpet.107.120311

    CAS  PubMed  Google Scholar 

  • Mercer LP, Kelley DS, Humphries LL, Dunn JD (1994) Manipulation of central nervous system histamine or histaminergic receptors (H1) affects food intake in rats. J Nutr 124:1029–1036

    CAS  PubMed  Google Scholar 

  • Mercer LP, Kelley DS, Haq A, Humphries LL (1996) Dietary induced anorexia: a review of involvement of the histaminergic system. J Am Coll Nutr 15:223–230

    CAS  PubMed  Google Scholar 

  • Mochizuki H, Tashiro M, Tagawa M et al (2002) The effects of a sedative antihistamine, d-chlorpheniramine, on visuomotor spatial discrimination and regional brain activity as measured by positron emission tomography (PET). Hum Psychopharmacol 17:413–418. doi:10.1002/hup.430

    CAS  PubMed  Google Scholar 

  • Mochizuki H, Kimura Y, Ishii K et al (2004a) Quantitative measurement of histamine H1 receptors in human brains by PET and [11C]doxepin. Nucl Med Biol 31:165–171. doi:10.1016/j.nucmedbio.2003.08.010

    CAS  PubMed  Google Scholar 

  • Mochizuki H, Kimura Y, Ishii K et al (2004b) Simplified PET measurement for evaluating histamine H1 receptors in human brains using [11C]doxepin. Nucl Med Biol 31:1005–1011. doi:10.1016/j.nucmedbio.2004.06.009

    CAS  PubMed  Google Scholar 

  • Molina-Hernández A, Díaz NF, Arias-Montaño J-A (2012) Histamine in brain development. J Neurochem 122:872–882. doi:10.1111/j.1471-4159.2012.07863.x

    PubMed  Google Scholar 

  • Morimoto T, Yamamoto Y, Yamatodani A (2001) Brain histamine and feeding behavior. Behav Brain Res 124:145–150. doi:10.1016/S0166-4328(01)00225-X

    CAS  PubMed  Google Scholar 

  • Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354. doi:10.1016/j.neurobiolaging.2004.05.010

    CAS  PubMed  Google Scholar 

  • Nagase T, Mizutani T, Ishikawa S et al (2008) Synthesis, structure-activity relationships, and biological profiles of a quinazolinone class of histamine H3 receptor inverse agonists. J Med Chem 51:4780–4789. doi:10.1021/jm8003834

    CAS  PubMed  Google Scholar 

  • Nijmeijer S, de Graaf C, Leurs R, Vischer HF (2012) Molecular pharmacology of histamine H4 receptors. Front Biosci 17:2089–2106. doi:10.2741/4039

    Google Scholar 

  • Nikolaus S, Antke C, Müller H-W (2009) In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav Brain Res 204:32–66. doi:10.1016/j.bbr.2009.06.009

    PubMed  Google Scholar 

  • Nowak JZ (1994) Histamine in the central nervous system: its role in circadian rhythmicity. Acta Neurobiol Exp 54(Suppl):65–82

    Google Scholar 

  • Nuutinen S, Panula P (2010) Histamine in neurotransmission and brain diseases. In: Thurmond RL (ed) Histamine in inflammation. Springer, New York, pp 95–107. doi:10.1007/978-1-4419-8056-4_10

  • Okamura N, Yanai K (2009) Molecular PET imaging of acetylcholine esterase, histamine H1 receptor and amyloid deposits in Alzheimer disease. In: Lim CT, Goh JCH, Magjarevic R (eds) 13th international conference on biomedical engineering. Springer, Berlin/Heidelberg, pp 2181–2183

    Google Scholar 

  • Okamura N, Yanai K, Higuchi M et al (2000) Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine. Br J Pharmacol 129:115–123. doi:10.1038/sj.bjp.0702994

    CAS  PubMed  Google Scholar 

  • Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147:S127–S135. doi:10.1038/sj.bjp.0706440

    CAS  PubMed  Google Scholar 

  • Passani MB, Ballerini C (2012) Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Front Syst Neurosci 6:32. doi:10.3389/fnsys.2012.00032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Passani MB, Blandina P (2011) Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol Sci 32:242–249. doi:10.1016/j.tips.2011.01.003

    CAS  PubMed  Google Scholar 

  • Passani MB, Blandina P, Torrealba F (2011) The histamine H3 receptor and eating behavior. J Pharmacol Exp Ther 336:24–29. doi:10.1124/jpet.110.171306

    CAS  PubMed  Google Scholar 

  • Pawluck DE, Gorey KM (1998) Secular trends in the incidence of anorexia nervosa: integrative review of population-based studies. Int J Eat Disord 23:347–352. doi:10.1002/(SICI)1098-108X(199805)23:4<347::AID-EAT1>3.0.CO;2-I

    CAS  PubMed  Google Scholar 

  • Plisson C, Bender D, Ashworth S et al (2006) PET imaging of the CNS histamine H3 receptor using [11C]GSK189254A. Neuroimage 31:T47. doi:10.1016/j.neuroimage.2006.04.038

    Google Scholar 

  • Plisson C, Gunn RN, Cunningham VJ et al (2009) 11C-GSK189254: a selective radioligand for in vivo central nervous system imaging of histamine H3 receptors by PET. J Nucl Med 50:2064–2072. doi:10.2967/jnumed.109.062919

    CAS  PubMed  Google Scholar 

  • Ponchant M, Demphel S, Fuseau C et al (1997) Radiosynthesis and biodistribution of two potential antagonists of cerebral histamine H3 receptors for PET studies: [18F]FUB 272 and [11C]UCL 1829. J Label Compd Radiopharm 40:605–607. doi:10.1002/jlcr.2580400901

    Google Scholar 

  • Prell GD, Khandelwal JK, Burns RS et al (1988) Elevated levels of histamine metabolites in cerebrospinal fluid of aging, healthy humans. Compr Gerontol A 2:114–119

    CAS  PubMed  Google Scholar 

  • Prell GD, Khandelwal JK, Burns RS et al (1991) Influence of age and gender on the levels of histamine metabolites and pros-methylimidazoleacetic acid in human cerebrospinal fluid. Arch Gerontol Geriatr 12:1–12. doi:10.1016/0167-4943(91)90002-8

    CAS  PubMed  Google Scholar 

  • Prell GD, Green JP, Kaufmann CA et al (1995) Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res 14:93–104. doi:http://dx.doi.org/10.1016/0920-9964(95)00090-9

    CAS  PubMed  Google Scholar 

  • Quach TT, Duchemin AM, Rose C, Schwartz JC (1980) Labeling of histamine H1-receptors in the brain of the living mouse. Neurosci Lett 17:49–54. doi:10.1016/0304-3940(80)90060-9

    CAS  PubMed  Google Scholar 

  • Ravert HT, Dannals RF, Wilson AA, Wagner HN (1992) (N-[11C]-Methyl)doxepin: Synthesis of a radiotracer for studying the histamine H-1 receptor. J Label Compd Radiopharm 31:403–407. doi:10.1002/jlcr.2580310510

    CAS  Google Scholar 

  • Repka-Ramirez MS (2003) New concepts of histamine receptors and actions. Curr Allergy Asthma Rep 3:227–231. doi:10.1007/s11882-003-0044-3

    PubMed  Google Scholar 

  • Resch CL, Szabo Z (1994) Analysis of dynamic positron emission tomography images using a neural network. J Hopkins APL Tech Dig 15:265–268

    Google Scholar 

  • Saeki T, Ueda K, Tanigawara Y et al (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268:6077–6080

    CAS  PubMed  Google Scholar 

  • Sakata T, Yoshimatsu H, Kurokawa M (1997) Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition 13:403–411. doi:10.1016/S0899-9007(97)91277-6

    CAS  PubMed  Google Scholar 

  • Saligrama N, Noubade R, Case LK et al (2012) Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. Eur J Immunol 42:1536–1546. doi:10.1002/eji.201141859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandvik AK, Brenna E, Waldum HL (1997) Review article: the pharmacological inhibition of gastric acid secretion–tolerance and rebound. Aliment Pharmacol Ther 11:1013–1018. doi:10.1046/j.1365-2036.1997.00257.x

    CAS  PubMed  Google Scholar 

  • Schmelz M (2010) Itch and pain. Neurosci Biobehav Rev 34:171–176. doi:10.1016/j.neubiorev.2008.12.004

    CAS  PubMed  Google Scholar 

  • Schoeffter P, Godfraind T (1989) Histamine receptors in the smooth muscle of human internal mammary artery and saphenous vein. Pharmacol Toxicol 64:64–71. doi:10.1111/j.1600-0773.1989.tb00603.x

    CAS  PubMed  Google Scholar 

  • Schnell D, Brunskole I, Ladova K et al (2011) Expression and functional properties of canine, rat, and murine histamine H4 receptors in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 383:457–470. doi:10.1007/s00210-011-0612-3

    Google Scholar 

  • Selivanova SV, Honer M, Combe F et al (2012) Radiofluorinated histamine H3 receptor antagonist as a potential probe for in vivo PET imaging: Radiosynthesis and pharmacological evaluation. Bioorg Med Chem 20:2889–2896. doi:10.1016/j.bmc.2012.03.024

    CAS  PubMed  Google Scholar 

  • Senda M, Kubo N, Adachi K et al (2009) Cerebral histamine H1 receptor binding potential measured with PET under a test dose of olopatadine, an antihistamine, is reduced after repeated administration of olopatadine. J Nucl Med 50:887–892. doi:10.2967/jnumed.108.058537

    CAS  PubMed  Google Scholar 

  • Shibuya K, Funaki Y, Hiraoka K et al (2012) [(11)C]Doxepin binding to histamine H1 receptors in living human brain: reproducibility during attentive waking and circadian rhythm. Front Syst Neurosci 6:1–7. doi:10.3389/fnsys.2012.00045

    Google Scholar 

  • Shim W-S, Oh U (2008) Histamine-induced itch and its relationship with pain. Mol Pain 4:29. doi:10.1186/1744-8069-4-29

    PubMed Central  PubMed  Google Scholar 

  • Slifstein M (2010) When reversible ligands do not reverse, and other modelers’ dilemmas. J Nucl Med 51:1005–1008. doi:10.2967/jnumed.109.073445

    PubMed  Google Scholar 

  • Smink FRE, van Hoeken D, Hoek HW (2012) Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep 14:406–414. doi:10.1007/s11920-012-0282-y

    PubMed Central  PubMed  Google Scholar 

  • Smith DF, Jakobsen S (2009) Molecular tools for assessing human depression by positron emission tomography. Eur Neuropsychopharmacol 19:611–628. doi:10.1016/j.euroneuro.2009.04.005

    CAS  PubMed  Google Scholar 

  • Smits RA, Leurs R, de Esch IJP (2009) Major advances in the development of histamine H4 receptor ligands. Drug Discov Today 14:745–753. doi:10.1016/j.drudis.2009.05.007

    CAS  PubMed  Google Scholar 

  • Smits RA, Adami M, Istyastono EP et al (2010) Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H4 receptor inverse agonists. J Med Chem 53:2390–2400. doi:10.1021/jm901379s

    CAS  PubMed  Google Scholar 

  • Spina E, de Leon J (2007) Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 100:4–22. doi:10.1111/j.1742-7843.2007.00017.x

    CAS  PubMed  Google Scholar 

  • Stark H, Purand K, Hüls A et al (1996) [125I]iodoproxyfan and related compounds: a reversible radioligand and novel classes of antagonists with high affinity and selectivity for the histamine H3 receptor. J Med Chem 39:1220–1226. doi:10.1021/jm9504767

    CAS  PubMed  Google Scholar 

  • Stark H, Kathmann M, Schlicker E et al (2004) Medicinal chemical and pharmacological aspects of imidazole-containing histamine H3 receptor antagonists. Mini Rev Med Chem 4:965–977

    CAS  PubMed  Google Scholar 

  • Suzuki A, Tashiro M, Kimura Y et al (2005) Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11C]doxepin. Ann Nucl Med 19:425–433. doi:10.1007/BF02985569

    CAS  PubMed  Google Scholar 

  • Szabo Z, Ravert HT, Gözükara I et al (1993) Noncompartmental and compartmental modeling of the kinetics of carbon-11 labeled pyrilamine in the human brain. Synapse 15:263–275. doi:10.1002/syn.890150403

    CAS  PubMed  Google Scholar 

  • Tagawa M, Kano M, Okamura N et al (2001) Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. Br J Clin Pharmacol 52:501–509. doi:10.1046/j.1365-2125.2001.01471.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tannenbaum C, Paquette A, Hilmer S et al (2012) A systematic review of amnestic and non-amnestic mild cognitive impairment induced by anticholinergic, antihistamine, GABAergic and opioid drugs. Drugs Aging 29:639–658. doi:10.2165/11633250-000000000-00000

    CAS  PubMed  Google Scholar 

  • Tashiro M, Mochizuki H, Iwabuchi K et al (2002a) Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain. Life Sci 72:409–414. doi:10.1016/S0024-3205(02)02276-2

    CAS  PubMed  Google Scholar 

  • Tashiro M, Sakurada Y, Mochizuki H et al (2002b) Study on CNS side effects of fexofenadine and cetirizine: measurement of histamine H1 receptor occupancy using positron emission tomography. J Clin Pharmacol 42:1071

    Google Scholar 

  • Tashiro M, Sakurada Y, Iwabuchi K et al (2004) Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 44:890–900. doi:10.1177/0091270004267590

    Google Scholar 

  • Tashiro M, Mochizuki H, Sakurada Y et al (2006) Brain histamine H receptor occupancy of orally administered antihistamines measured by positron emission tomography with 11C-doxepin in a placebo-controlled crossover study design in healthy subjects: a comparison of olopatadine and ketotifen. Br J Clin Pharmacol 61:16–26. doi:10.1111/j.1365-2125.2005.02514.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tashiro M, Duan X, Kato M et al (2008a) Brain histamine H1 receptor occupancy of orally administered antihistamines, bepotastine and diphenhydramine, measured by PET with 11C-doxepin. Br J Clin Pharmacol 65:811–821. doi:10.1111/j.1365-2125.2008.03143.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tashiro M, Fukuda H, Itoh M et al (2008b) Molecular imaging at Tohoku University: from cancer to neuroreceptors. Curr Med Imaging Rev 4:8–13. doi:10.2174/157340508783502796

    CAS  Google Scholar 

  • Tashiro M, Sakurada Y, Mochizuki H et al (2008c) Effects of a sedative antihistamine, D-chlorpheniramine, on regional cerebral perfusion and performance during simulated car driving. Hum Psychopharmacol 23:139–150. doi:10.1002/hup.909

    CAS  PubMed  Google Scholar 

  • Tashiro M, Kato M, Miyake M et al (2009) Dose dependency of brain histamine H(1) receptor occupancy following oral administration of cetirizine hydrochloride measured using PET with [11C]doxepin. Hum Psychopharmacol 24:540–548. doi:10.1002/hup.1051

    CAS  PubMed  Google Scholar 

  • Teuscher C, Subramanian M, Noubade R et al (2007) Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc Natl Acad Sci U S A 104:10146–10151. doi:10.1073/pnas.0702291104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thakkar MM (2011) Histamine in the regulation of wakefulness. Sleep Med Rev 15:65–74. doi:10.1016/j.smrv.2010.06.004

    PubMed Central  PubMed  Google Scholar 

  • Theunissen EL, Vermeeren A, Vuurman EFPM, Ramaekers JG (2006) Stimulating effects of H1-antagonists. Curr Pharm Des 12:2501–2509

    Google Scholar 

  • Thurmond RL (2010) Histamine in inflammation, 1st edn. Springer, New York. doi:10.1007/978-1-4419-8056-4

    Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7:41–53. doi:10.1038/nrd2465

    CAS  PubMed  Google Scholar 

  • Tiligada E, Kyriakidis K, Chazot PL, Passani MB (2011) Histamine pharmacology and new CNS drug targets. CNS Neurosci Ther 17:620–628. doi:10.1111/j.1755-5949.2010.00212.x

    CAS  PubMed  Google Scholar 

  • Traiffort E, Pollard H, Moreau J et al (1992) Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with [125I]iodoaminopotentidine. J Neurochem 59:290–299. doi:10.1111/j.1471-4159.1992.tb08903.x

    CAS  PubMed  Google Scholar 

  • Van der Goot H, Timmerman H (2000) Selective ligands as tools to study histamine receptors. Eur J Med Chem 35:5–20. doi:10.1016/S0223-5234(00)00101-X

    PubMed  Google Scholar 

  • Van Ruitenbeek P, Vermeeren A, Riedel WJ (2010) Cognitive domains affected by histamine H(1)-antagonism in humans: a literature review. Brain Res Rev 64:263–282. doi:10.1016/j.brainresrev.2010.04.008

    PubMed  Google Scholar 

  • Villemagne VL, Dannals RF, Sánchez-Roa PM et al (1991) Imaging histamine H1 receptors in the living human brain with carbon-11-pyrilamine. J Nucl Med 32:308–311

    CAS  PubMed  Google Scholar 

  • Vizuete ML, Traiffort E, Bouthenet ML et al (1997) Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience 80:321–343. doi:http://dx.doi.org/10.1016/S0306-4522(97)00010-9

    CAS  PubMed  Google Scholar 

  • Vohora D, Bhowmik M (2012) Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer’s disease, ADHD, schizophrenia, and drug abuse. Front Syst Neurosci 6:1–10. doi:10.3389/fnsys.2012.00072

    Google Scholar 

  • Wang K-Y, Tanimoto A, Yamada S et al (2010) Histamine regulation in glucose and lipid metabolism via histamine receptors: model for nonalcoholic steatohepatitis in mice. Am J Pathol 177:713–723. doi:10.2353/ajpath.2010.091198

    CAS  PubMed  Google Scholar 

  • Wang M, Gao M, Steele BL et al (2012) A new facile synthetic route to [11C]GSK189254, a selective PET radioligand for imaging of CNS histamine H(3) receptor. Bioorg Med Chem Lett 22:4713–4718. doi:10.1016/j.bmcl.2012.05.076

    CAS  PubMed  Google Scholar 

  • Watanabe T, Yanai K (2001) Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med 195:197–217. doi:10.1620/tjem.195.197

    CAS  PubMed  Google Scholar 

  • Windaus A, Vogt W (1907) Synthese des Imidazolyl-Äthylamins. Ber d Chem Gesell 40:3691–3695. doi:10.1002/cber.190704003164

    Google Scholar 

  • Windhorst AD, Leurs R, Menge WMPB et al (1998) Synthesis of radioligands for the histamine H3 receptor. In: Leurs R, Timmerman H (eds) The histamine H3 receptor A target for new drugs. Elsevier, Amsterdam/New York, p 159–174. doi:10.1016/S0165-7208(98)80029-9

  • Windhorst AD, Timmerman H, Klok RP et al (1999a) Evaluation of [18F]VUF 5000 as a potential PET ligand for brain imaging of the histamine H3 receptor. Bioorg Med Chem 7:1761–1767. doi:10.1016/S0968-0896(99)00108-X

    CAS  PubMed  Google Scholar 

  • Windhorst AD, Timmerman H, Klok RP et al (1999b) Radiosynthesis and biodistribution of 123I-labeled antagonists of the histamine H3 receptor as potential SPECT ligands. Nucl Med Biol 26:651–659. doi:10.1016/S0969-8051(99)00014-1

    CAS  PubMed  Google Scholar 

  • Windhorst AD, Timmerman H, Menge WMPB et al (1999c) Synthesis, in vitro pharmacology and radiosynthesis of N-(cis-4-fluoromethylcycloyhexyl)-4-(1(H)-imidazol-4-yl)piperidine-11-thiocarbonamide (VUF 5000), a potential PET ligand for the histamine H3 receptor. J Label Compd Radiopharm 42:293–307. doi:10.1002/(SICI)1099-1344(199903)42:3<293::AID-JLCR191>3.0.CO;2-B

    CAS  Google Scholar 

  • Wong DF, Pomper MG (2003) Predicting the success of a radiopharmaceutical for in vivo imaging of central nervous system neuroreceptor systems. Mol Imaging Biol 5:350–362. doi:10.1016/j.mibio.2003.09.011

    PubMed  Google Scholar 

  • Xiaofeng B, Shuiyu L, Liow J-S et al (2011) Radiolabeling and evaluation of [F-18]XB-1 in monkey as a prospective histamine subtype 3 receptor PET radioligand. J Label Compd Radiopharm 54:S83. doi:10.1002/jlcr.1925

    Google Scholar 

  • Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15. doi:10.1016/j.pharmthera.2006.06.008

    CAS  PubMed  Google Scholar 

  • Yanai K, Dannals RF, Wilson AA et al (1988) (N-methyl-[11C])pyrilamine, a radiotracer for histamine H-1 receptors: radiochemical synthesis and biodistribution study in mice. Int J Radiat Appl Instrum Part B 15:605–610. doi:10.1016/0883-2897(88)90050-5

    CAS  Google Scholar 

  • Yanai K, Dannals RF, Wilson AA et al (1989) Biodistribution and radiation absorbed dose of (N-methyl[11C])pyrilamine: a histamine H-1 receptor radiotracer. Int J Radiat Appl Instrum Part B 16:361–363. doi:10.1016/0883-2897(89)90100-1

    CAS  Google Scholar 

  • Yanai K, Watanabe T, Hatazawa J et al (1990a) Visualization of histamine H1 receptors in dog brain by positron emission tomography. Neurosci Lett 118:41–44. doi:10.1016/0304-3940(90)90244-4

    CAS  PubMed  Google Scholar 

  • Yanai K, Yagi N, Watanabe T et al (1990b) Specific binding of [3H]pyrilamine to histamine H1 receptors in guinea pig brain in vivo: determination of binding parameters by a kinetic four-compartment model. J Neurochem 55:409–420. doi:10.1111/j.1471-4159.1990.tb04152.x

    CAS  PubMed  Google Scholar 

  • Yanai K, Watanabe T, Itoh M et al (1991) Labeling of histamine H1-receptors in vivo: a compartment model analysis and positron emission tomographic imaging. Agents Actions Suppl 33:381–386

    CAS  PubMed  Google Scholar 

  • Yanai K, Watanabe T, Meguro K et al (1992a) Age-dependent decrease in histamine H1 receptor in human brains revealed by PET. Neuroreport 3:433–436. doi:10.1097/00001756-199205000-00014

    CAS  PubMed  Google Scholar 

  • Yanai K, Watanabe T, Yokoyama H et al (1992b) Mapping of histamine H1 receptors in the human brain using [11C]pyrilamine and positron emission tomography. J Neurochem 59:128–136. doi:10.1111/j.1471-4159.1992.tb08883.x

    CAS  PubMed  Google Scholar 

  • Yanai K, Watanabe T, Yokoyama H et al (1992c) Histamine H1 receptors in human brain visualized in vivo by [11C]doxepin and positron emission tomography. Neurosci Lett 137:145–148. doi:10.1016/0304-3940(92)90390-S

    CAS  PubMed  Google Scholar 

  • Yanai K, Ryu JH, Watanabe T et al (1994) Labelling of histamine H1, H2, and H3 receptor antagonists with carbon-11 using on-line methylation system: potential radiopharmaceuticals for PET studies. J Label Compd Radiopharm 35:520. doi:10.1002/jlcr.2580350107

    Google Scholar 

  • Yanai K, Ryu JH, Watanabe T et al (1995a) Positron emission tomographic study of central histamine H1-receptor occupancy in human subjects treated with epinastine, a second-generation antihistamine. Methods Find Exp Clin Pharmacol 17:64–69

    CAS  PubMed  Google Scholar 

  • Yanai K, Ryu JH, Watanabe T et al (1995b) Histamine H1 receptor occupancy in human brains after single oral doses of histamine H1 antagonists measured by positron emission tomography. Br J Pharmacol 116:1649–1655

    CAS  PubMed  Google Scholar 

  • Yanai K, Okamura N, Tagawa M et al (1999) New findings in pharmacological effects induced by antihistamines: from PET studies to knock-out mice. Clin Exp Allergy 29:29–36. doi:10.1046/j.1365-2222.1999.00008.x-i1

    CAS  PubMed  Google Scholar 

  • Yanai K, Okamura N, Kudo Y et al (2007) Molecular pet imaging of acetylcholine esterase, histamine H1 receptor and amyloid deposits in Alzheimer disease. J Neurochem 102:92. doi:10.1111/j.0022-3042.2007.04727.x

    Google Scholar 

  • Yanai K, Zhang D, Manabu T, Shibuya K (2008) Evaluation of residual sedative effect of antihistamines by measuring central histamine H1 receptor occupancy using 11C-doxepin -PET. Acta Derm Venereol 89:707. doi:10.2340/00015555-0751

    Google Scholar 

  • Yanai K, Nakamura T, Tashiro M, Watanabe T (2011a) Imaging histamine H1 receptors using PET and [11C]doxepin: further progress. Inflamm Res 60:S347. doi:10.1007/s00011-011-0371-0

    Google Scholar 

  • Yanai K, Zhang D, Tashiro M et al (2011b) Positron emission tomography evaluation of sedative properties of antihistamines. Expert Opin Drug Saf 10:613–622. doi:10.1517/14740338.2011.562889

    CAS  PubMed  Google Scholar 

  • Yanai K, Rogala B, Chugh K et al (2012) Safety considerations in the management of allergic diseases: focus on antihistamines. Curr Med Res Opin 28:623–642. doi:10.1185/03007995.2012.672405

    CAS  PubMed  Google Scholar 

  • Yoshizawa M, Tashiro M, Fukudo S et al (2009) Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry 65:329–335. doi:10.1016/j.biopsych.2008.08.012

    CAS  PubMed  Google Scholar 

  • Yu F, Bonaventure P, Thurmond RL (2010) The future antihistamines: histamine H(3) and H (4) receptor ligands. Adv Exp Med Biol 709:125–140. doi:10.1007/978-1-4419-8056-4_12

    CAS  PubMed  Google Scholar 

  • Zhang M, Ballard ME, Pan L et al (2005) Lack of cataleptogenic potentiation with non-imidazole H3 receptor antagonists reveals potential drug-drug interactions between imidazole-based H3 receptor antagonists and antipsychotic drugs. Brain Res 1045:142–149. doi:10.1016/j.brainres.2005.03.018

    CAS  PubMed  Google Scholar 

  • Zhang D, Tashiro M, Shibuya K et al (2010) Next-day residual sedative effect after nighttime administration of an over-the-counter antihistamine sleep aid, diphenhydramine, measured by positron emission tomography. J Clin Psychopharmacol 30:694–701. doi:10.1097/JCP.0b013e3181fa8526

    CAS  PubMed  Google Scholar 

  • Zung WW (1965) A self-rating depression scale. Arch Gen Psychiatry 12:63–70

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The compilation of this literature review was supported by funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2011-278850 (INMiND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Funke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Funke, U. et al. (2014). Imaging Histamine Receptors Using PET and SPECT. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics