Skip to main content

Animal Models for Brain Research

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

Animal models are important experimental tools in neuroscience research since they allow appraisal of selected and specific brain pathogenesis-related questions – often not easily accessible in human patients – in a temporal and spatial pattern. Translational research based on valid animal models may aid in alleviating some of the unmet needs in the current pharmaceutical market. Of primary concern to a neuroscience researcher is the selection of the most relevant animal model to achieve pursued research goals. Researchers are challenged to develop models that recapitulate the disorder in question, but are quite often confronted with the choice between models that reproduce cardinal pathological features of the disorders caused by mechanisms that may not necessarily occur in the patients versus models that are based on known aetiological mechanisms that may not reproduce all clinical features. Besides offering some general concepts concerning the relevance, validity and generalisation of animal models for brain disorders, this chapter focuses in detail on animal models of brain disease, in particular schizophrenia models as examples of animal models of psychiatric disorders and Alzheimer’s disease models as examples of animal models of neurological/neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

Amyloid β

BPSD:

Behavioural and psychological signs and symptoms of dementia

ChAT:

Choline O-acetyltransferase

DISC1 :

Disrupted in schizophrenia-1 gene

DSM-IVTR:

Diagnostic and Statistical Manual of Mental Disorders 4th edition

DTNBP1 :

Dysbindin gene

ERBB4 :

Neuregulin 1 receptor gene

FRL:

Flinders resistant line

FSL:

Flinders sensitive line

HAB:

High-anxiety-related behaviour Wistar rat line

LAB:

Low-anxiety-related behaviour Wistar rat line

LI:

Latent inhibition

NFT:

Neurofibrillary tangle

NGF:

Nerve growth factor

NMDA:

N-methyl-D-aspartate

NRG1 :

Neuregulin 1 gene

PCP:

Phencyclidine

PDAPP:

Platelet-derived growth factor promoter-driven APP

PPI:

Prepulse inhibition

PSEN:

Presenilin

RELN:

Reelin gene

SAM:

Senescence‐accelerated mouse

SAMP:

SAM‐prone substrain

SNP:

Single nucleotide polymorphism

TDP-43:

TAR DNA-binding protein 43

References

  • Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    CAS  PubMed  Google Scholar 

  • Alonso JR, HS U, Amaral DG (1996) Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection. J Comp Neurol 375:527–551

    CAS  PubMed  Google Scholar 

  • Amann LC, Gandal MJ, Halene TB et al (2010) Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 83:147–161

    PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental health disorders, 4th edn. American Psychiatric Publishing, Washington, DC. doi:10.1176/appi.books.9780890423349

  • Andiné P, Widermark N, Axelsson R et al (1999) Characterization of MK-801-induced behavior as a putative rat model of psychosis. J Pharmacol Exp Ther 290:1393–1408

    PubMed  Google Scholar 

  • Andreasen NC (1995) Symptoms, signs, and diagnosis of schizophrenia. Lancet 346:477–481

    CAS  PubMed  Google Scholar 

  • Andreasson KI, Savonenko A, Vidensky S et al (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21:8198–8209

    CAS  PubMed  Google Scholar 

  • Ashcroft AE (2010) Mass spectrometry and the amyloid problem–how far can we go in the gas phase? J Am Soc Mass Spectrom 21:1087–1096

    CAS  PubMed  Google Scholar 

  • Ayhan Y, Abazyan B, Nomura J, Kim R et al (2011) Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry 16:293–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker M (2011) Animal models: inside the minds of mice and men. Nature 475:123–128

    CAS  PubMed  Google Scholar 

  • Banerjee A, Macdonald ML, Borgmann-Winter KE et al (2010) Neuregulin 1-erbB4 pathway in schizophrenia: from genes to an interactome. Brain Res Bull 83:132–139

    CAS  PubMed  Google Scholar 

  • Barr AM, Fish KN, Markou A et al (2008) Heterozygous reeler mice exhibit alterations in sensorimotor gating but not presynaptic proteins. Eur J Neurosci 27:2568–2574

    PubMed  Google Scholar 

  • Basak JM, Holtzman DM (2011) APP-based transgenic models: the PDAPP model. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Belzung C, Philippot P (2007) Anxiety from a phylogenetic perspective: is there a qualitative difference between human and animal anxiety? Neural Plast 2007:59676

    PubMed Central  PubMed  Google Scholar 

  • Berlanga ML, Price DL, Phung BS et al (2011) Multiscale imaging characterization of dopamine transporter knockout mice reveals regional alterations in spine density of medium spiny neurons. Brain Res 1390:41–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Billings LM, Oddo S, Green KN et al (2005) Intraneuronal abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    CAS  PubMed  Google Scholar 

  • Bleiholder C, Dupuis NF, Wyttenbach T et al (2011) Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat Chem 3:172–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bons N, Mestre N, Ritchie K et al (1994) Identification of amyloid beta protein in the brain of the small, short‐lived lemurian primate microcebus murinus. Neurobiol Aging 15:215–220

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Strothjohann M (1994) Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci Lett 171:1–4

    CAS  PubMed  Google Scholar 

  • Bray NJ (2008) Gene expression in the etiology of schizophrenia. Schizophr Bull 34:412–418

    PubMed  Google Scholar 

  • Brigman JL, Padukiewicz KE, Sutherland ML et al (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci 120:984–988

    PubMed  Google Scholar 

  • Buccafusco JJ (2008) Methods of behavior analysis in neuroscience. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Buka SL, Cannon TD, Torrey EF et al, Collaborative Study Group on the Perinatal Origins of Severe Psychiatric Disorders (2008) Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biol Psychiatry 63:809–815

    Google Scholar 

  • Bullock AE, Slobe BS, Vazquez V et al (1997) Inbred mouse strains differ in the regulation of startle and prepulse inhibition of the startle response. Behav Neurosci 111:1353–1360

    CAS  PubMed  Google Scholar 

  • Bunsey M, Eichenbaum H (1996) Conservation of hippocampal memory function in rats and humans. Nature 379:255–257

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Poon HF (2005) The senescence‐accelerated prone mouse (SAMP8): a model of age‐related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40:774–783

    CAS  PubMed  Google Scholar 

  • Capsoni S, Ugolini G, Comparini A et al (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci U S A 97:6826–6831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cardno AG, Marshall EJ, Coid B et al (1999) Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56:162–168

    CAS  PubMed  Google Scholar 

  • Carpenter WT, Koenig JI (2008) The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology 33:2061–2079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carpenter AP Jr, Pontecorvo MJ, Hefti FF et al (2009) The use of the exploratory IND in the evaluation and development of 18F-PET radiopharmaceuticals for amyloid imaging in the brain: a review of one company’s experience. Q J Nucl Med Mol Imaging 53:387–393

    PubMed  Google Scholar 

  • Castañé A, Theobald DE, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210:74–83

    PubMed Central  PubMed  Google Scholar 

  • Castellani RJ, Alexiev BA, Phillips D et al (2007) Microscopic investigations in neurodegenerative diseases. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    CAS  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS (2003) Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in nonhuman primates. Biol Psychiatry 54:105–110

    CAS  PubMed  Google Scholar 

  • Castner SA, al-Tikriti MS, Baldwin RM et al (2000) Behavioral changes and [123I]IBZM equilibrium SPECT measurement of amphetamine-induced dopamine release in rhesus monkeys exposed to subchronic amphetamine. Neuropsychopharmacology 22:4–13

    CAS  PubMed  Google Scholar 

  • Caviness VS Jr (1976) Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. J Comp Neurol 170:435–447

    PubMed  Google Scholar 

  • Cheng Y, Ono M, Kimura H et al (2012) Technetium-99m labeled pyridyl benzofuran derivatives as single photon emission computed tomography imaging probes for β-amyloid plaques in Alzheimer’s brains. J Med Chem 55:2279–2286

    CAS  PubMed  Google Scholar 

  • Choi SR, Golding G, Zhuang Z et al (2009) Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med 50:1887–1894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chourbaji S, Zacher C, Sanchis-Segura C et al (2005) Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 16:70–78

    CAS  PubMed  Google Scholar 

  • Clapcote SJ, Roder JC (2006) Deletion polymorphism of Disc1 is common to all 129 mouse substrains: implications for gene-targeting studies of brain function. Genetics 173:2407–2410

    CAS  PubMed  Google Scholar 

  • Cohen BD, Rosenbaum G, Luby ED et al (1962) Comparison of phencyclidine hydrochloride (Sernyl) with other drugs. Simulation of schizophrenic performance with phencyclidine hydrochloride (Sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (Amytal) sodium; II. Symbolic and sequential thinking. Arch Gen Psychiatry 6:395–401

    CAS  PubMed  Google Scholar 

  • Colton CA, Wilcock DM, Wink DA et al (2008) The effects of NOS2 gene deletion on mice expressing mutated human AbetaPP. J Alzheimers Dis 15:571–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Contestabile A (2011) The history of the cholinergic hypothesis. Behav Brain Res 221:334–340

    CAS  PubMed  Google Scholar 

  • Cork LC, Powers RE, Selkoe DJ et al (1988) Neurofibrillary tangles and senile plaques in aged bears. J Neuropathol Exp Neurol 47:629–641

    CAS  PubMed  Google Scholar 

  • Crawley J (2000) What’s wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice. Wiley-Liss, Wilmington

    Google Scholar 

  • Crawley JN, Belknap JK, Collins A et al (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    CAS  Google Scholar 

  • Creese I, Iversen SD (1973) Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res 55:369–382

    CAS  PubMed  Google Scholar 

  • Cui M, Ono M, Kimura H et al (2011) Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of β-amyloid plaques in Alzheimer’s disease. Nucl Med Biol 38:313–320

    CAS  PubMed  Google Scholar 

  • Cummings BJ, Su JH, Cotman CW et al (1993) Beta‐amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease. Neurobiol Aging 14:547–560

    CAS  PubMed  Google Scholar 

  • Cummings BJ, Head E, Ruehl W et al (1996) The canine as an animal model of human aging and dementia. Neurobiol Aging 17:259–268

    CAS  PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    PubMed  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    CAS  PubMed  Google Scholar 

  • De Deyn PP, Van Dam D (2011) General introduction to animal models of human conditions. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • De Deyn PP, Katz IR, Brodathy H et al (2005) Management of agitation, aggression, and psychosis associated with dementia: a pooled analysis including three randomized, placebo-controlled double-blind trials in nursing home residents treated with risperidone. Clin Neurol Neurosurg 107:497–508

    PubMed  Google Scholar 

  • Deacon R (2011) APP-based transgenic models: the Tg2576 model. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mutant models for genes associated with schizophrenia. Biochem Soc Trans 37:308–312

    CAS  PubMed  Google Scholar 

  • Dieckmann M, Freudenberg F, Klein S et al (2007) Disturbed social behavior and motivation in rats selectively bred for deficient sensorimotor gating. Schizophr Res 97:250–253

    PubMed  Google Scholar 

  • Doorduin J, de Vries EF, Willemsen AT et al (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    PubMed  Google Scholar 

  • Doorduin J, Klein HC, de Jong JR et al (2010) Evaluation of [11C]-DAA1106 for imaging and quantification of neuroinflammation in a rat model of herpes encephalitis. Nucl Med Biol 37:9–15

    Google Scholar 

  • Drew LJ, Stark KL, Fénelon K et al (2011) Evidence for altered hippocampal function in a mouse model of the human 22q11.2 microdeletion. Mol Cell Neurosci 47:293–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dringenberg HC (2000) Alzheimer’s disease: more than a ‘cholinergic disorder’ – evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 115:235–249

    CAS  PubMed  Google Scholar 

  • Dworkin RH, Opler LA (1992) Simple schizophrenia, negative symptoms, and prefrontal hypodopaminergia. Am J Psychiatry 149:1284–1285

    CAS  PubMed  Google Scholar 

  • Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28:944–949

    CAS  PubMed  Google Scholar 

  • Eckelman WC (2003) The use of PET and knockout mice in the drug discovery process. Drug Discov Today 8:404–410

    CAS  PubMed  Google Scholar 

  • Ellenbroek BA, Cools AR (1990) Animal models with construct validity for schizophrenia. Behav Pharmacol 1:469–490

    PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres J Jr et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  Google Scholar 

  • Erickson CA, Barnes CA (2003) The neurobiology of memory changes in normal aging. Exp Gerontol 38:61–69

    CAS  PubMed  Google Scholar 

  • Estapé N, Steckler T (2002) Cholinergic blockade impairs performance in operant DNMTP in two inbred strains of mice. Pharmacol Biochem Behav 72:319–334

    PubMed  Google Scholar 

  • Falconer DS (1951) Two new mutants, Trembler and ‘Reeler’, with neurological actions in the house mouse. J Genetics 50:182–201

    Google Scholar 

  • Farris W, Mansourian S, Chang Y et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Featherstone RE, Kapur S, Fletcher PJ (2007) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1556–1571

    CAS  PubMed  Google Scholar 

  • Featherstone RE, Rizos Z, Kapur S et al (2008) A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res 189:170–179

    CAS  PubMed  Google Scholar 

  • Flood DG, Zuvich E, Marino MJ et al (2011) Prepulse inhibition of the startle reflex and response to antipsychotic treatments in two outbred mouse strains in comparison to the inbred DBA/2 mouse. Psychopharmacology (Berl) 215:441–454

    CAS  Google Scholar 

  • Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204:396–409

    PubMed  Google Scholar 

  • Fone KC, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087–1102

    CAS  PubMed  Google Scholar 

  • Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24:407–409

    CAS  PubMed  Google Scholar 

  • Frautschy SA, Yang F, Calderón L et al (1996) Rodent models of Alzheimer’s disease: rat A beta infusion approaches to amyloid deposits. Neurobiol Aging 17:311–321

    CAS  PubMed  Google Scholar 

  • Freichel C, Neumann M, Ballard T et al (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol Aging 28:1421–1435

    CAS  PubMed  Google Scholar 

  • Freyberg Z, Ferrando SJ, Javitch JA (2010) Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 167:388–396

    PubMed Central  PubMed  Google Scholar 

  • Fuster JM (1980) The prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobe. Raven Press, New York

    Google Scholar 

  • Games D, Adams D, Alessandrini R et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527

    CAS  PubMed  Google Scholar 

  • Gayle DA, Beloosesky R, Desai M et al (2004) Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. Am J Physiol Regul Integr Comp Physiol 286:R1024–R1029

    CAS  PubMed  Google Scholar 

  • Gearing M, Rebeck GW, Hyman BT et al (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer’s disease. Proc Natl Acad Sci U S A 91:9382–9386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gearing M, Tigges J, Mori H et al (1997) β‐amyloid (Aβ) deposition in the brains of aged orangutans. Neurobiol Aging 18:139–146

    CAS  PubMed  Google Scholar 

  • Gejman PV, Sanders AR, Kendler KS (2011) Genetics of schizophrenia: new findings and challenges. Annu Rev Genomics Hum Genet 12:121–144

    CAS  PubMed  Google Scholar 

  • Gerlai R (2010) Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 207:223–231

    PubMed Central  PubMed  Google Scholar 

  • Geula C, Nagykery N, Wu CK (2002) Amyloid‐beta deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol 103:48–58

    CAS  PubMed  Google Scholar 

  • Glahn DC, Thompson PM, Blangero J (2007) Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum Brain Mapp 28:488–501

    PubMed  Google Scholar 

  • Glenn MJ, Nesbitt C, Mumby DG (2003) Perirhinal cortex lesions produce variable patterns of retrograde amnesia in rats. Behav Brain Res 141:183–193

    PubMed  Google Scholar 

  • Glowinski J, Iversen L (1966a) Regional studies of catecholamines in the rat brain. 3. Subcellular distribution of endogenous and exogenous catecholamines in various brain regions. Biochem Pharmacol 15:977–987

    CAS  PubMed  Google Scholar 

  • Glowinski J, Iversen LL (1966b) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13:655–669

    CAS  PubMed  Google Scholar 

  • Glowinski J, Axelrod J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J Pharmacol Exp Ther 153:30–41

    CAS  PubMed  Google Scholar 

  • Gogos A, Bogeski M, van den Buuse M (2008) Role of serotonin-1A receptors in the action of antipsychotic drugs: comparison of prepulse inhibition studies in mice and rats and relevance for human pharmacology. Behav Pharmacol 19:548–561

    CAS  PubMed  Google Scholar 

  • Gong Y, Chang L, Viola KL et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 100:10417–10422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86

    CAS  PubMed  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    PubMed  Google Scholar 

  • Götz J, Schild A, Hoerndli F et al (2004) Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci 22:453–465

    PubMed  Google Scholar 

  • Gray JA, McNaughton N (1983) Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neurosci Biobehav Rev 7:119–188

    CAS  PubMed  Google Scholar 

  • Grayson DR, Chen Y, Costa E et al (2006) The human reelin gene: transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia. Pharmacol Ther 111:272–286

    CAS  PubMed  Google Scholar 

  • Gsell W, Jungkunz G, Riederer P (2004) Functional neurochemistry of Alzheimer’s disease. Curr Pharm Des 10:265–293

    CAS  PubMed  Google Scholar 

  • Gunn‐Moore DA, McVee J, Bradshaw JM et al (2006) Ageing changes in cat brains demonstrated by beta‐amyloid and AT8‐immunoreactive phosphorylated tau deposits. J Feline Med Surg 8:234–242

    PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Harkany T, O’Mahony S, Kelly JP et al (1998) Beta-amyloid(Phe(SO3H)24)25-35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res 90:133–145

    CAS  PubMed  Google Scholar 

  • Harkany T, Penke B, Luiten PG (2000) beta-Amyloid excitotoxicity in rat magnocellular nucleus basalis. Effect of cortical deafferentation on cerebral blood flow regulation and implications for Alzheimer’s disease. Ann N Y Acad Sci 903:374–386

    CAS  PubMed  Google Scholar 

  • Harrison P, Law A (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132–140

    CAS  PubMed  Google Scholar 

  • Hattori S, Murotani T, Matsuzaki S et al (2008) Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochem Biophys Res Commun 373:298–302

    CAS  PubMed  Google Scholar 

  • Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD et al (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780:294–303

    CAS  PubMed  Google Scholar 

  • He Y, Yao Z, Gu Y et al (1992) Nerve growth factor promotes collateral sprouting of cholinergic fibers in the septohippocampal cholinergic system of aged rats with fimbria transection. Brain Res 586:27–35

    CAS  PubMed  Google Scholar 

  • Head E, Moffat K, Das P et al (2005) β‐amyloid deposition and tau phosphorylation in clinically characterized aged cats. Neurobiol Aging 26:749–763

    CAS  PubMed  Google Scholar 

  • Hendley ED, Welch BL (1975) Electroconvulsive shock: sustained decrease in norepinephrine uptake affinity in a reserpine model of depression. Life Sci 16:45–54

    CAS  PubMed  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    CAS  PubMed  Google Scholar 

  • Huber G, März W, Martin JR et al (2000) Characterization of transgenic mice expressing apolipoprotein E4(C112R) and apolipoprotein E4(L28P; C112R). Neuroscience 101:211–218

    CAS  PubMed  Google Scholar 

  • Iliadi KG (2009) The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet 23:136–146

    CAS  PubMed  Google Scholar 

  • Insel TR (2007) From animal model to model animals. Biol Psychiatry 62:1337–1339

    PubMed  Google Scholar 

  • Ishrat T, Parveen K, Khan MM et al (2009) Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1281:117–127

    CAS  PubMed  Google Scholar 

  • Iversen LL, Glowinski J (1966) Regional studies of catecholamines in the rat brain. II. Rate of turnover of catecholamines in various brain regions. J Neurochem 13:671–682

    CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y et al (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552

    CAS  PubMed  Google Scholar 

  • Jaaro-Peled H (2009) Gene models of schizophrenia: DISC1 mouse models. Prog Brain Res 179:75–86

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Jaworski T, Dewachter I, Seymour CM et al (2010) Alzheimer’s disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta 1802:808–818

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    CAS  PubMed  Google Scholar 

  • Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164:1162–1194

    CAS  PubMed  Google Scholar 

  • Kaimal V, McConville P (2009) Importance of preclinical imaging in drug discovery. Charles River. http://www.criver.com/SiteCollectionDocuments/DIS_I_Imaging.pdf. Accessed 20 Apr 2012

  • Kilbourn MR, Domino EF (2011) Increased in vivo [11C]raclopride binding to brain dopamine receptors in amphetamine-treated rats. Eur J Pharmacol 654:254–257

    CAS  PubMed  Google Scholar 

  • Kimura N, Tanemura K, Nakamura S et al (2003) Age‐related changes of Alzheimer’s disease‐associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310:303–311

    CAS  PubMed  Google Scholar 

  • Kinney GG, Wilkinson LO, Saywell KL et al (1999) Rat strain differences in the ability to disrupt sensorimotor gating are limited to the dopaminergic system, specific to prepulse inhibition, and unrelated to changes in startle amplitude or nucleus accumbens dopamine receptor sensitivity. J Neurosci 19:5644–5653

    CAS  PubMed  Google Scholar 

  • Klein S, Koch M, Schwabe K (2008) Neuroanatomical changes in the adult rat brain after neonatal lesion of the medial prefrontal cortex. Exp Neurol 209:199–212

    CAS  PubMed  Google Scholar 

  • Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    CAS  PubMed  Google Scholar 

  • Klunk WE, Lopresti BJ, Ikonomovic MD et al (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606

    CAS  PubMed  Google Scholar 

  • Koike H, Arguello PA, Kvajo M et al (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci U S A 103:3693–3697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokkinidis L, Anisman H (1981) Amphetamine psychosis and schizophrenia: a dual model. Neurosci Biobehav Rev 5:449–461

    CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  • Kuntner C, Kesner AL, Bauer M et al (2009) Limitations of small animal PET imaging with [18F]FDDNP and FDG for quantitative studies in a transgenic mouse model of Alzheimer’s disease. Mol Imaging Biol 11:236–240

    PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    CAS  PubMed  Google Scholar 

  • Lane MA (2000) Nonhuman primate models in biogerontology. Exp Gerontol 35:533–541

    CAS  PubMed  Google Scholar 

  • Laviola G, Ognibene E, Romano E et al (2009) Gene-environment interaction during early development in the heterozygous reeler mouse: clues for modelling of major neurobehavioral syndromes. Neurosci Biobehav Rev 33:560–572

    CAS  PubMed  Google Scholar 

  • Lawlor PA, Young D (2011) Aβ infusion and related models of Alzheimer dementia. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Lazar NL, Rajakumar N, Cain DP (2008) Injections of NGF into neonatal frontal cortex decrease social interaction as adults: a rat model of schizophrenia. Schizophr Bull 34:127–136

    PubMed  Google Scholar 

  • Leboyer M, Bellivier F, Nosten-Bertrand M et al (1998) Psychiatric genetics: search for phenotypes. Trends Neurosci 21:102–105

    CAS  PubMed  Google Scholar 

  • Lemere CA, Beierschmitt A, Iglesias M et al (2004) Alzheimer’s disease abeta vaccine reduces central nervous system abeta levels in a non‐human primate, the Caribbean vervet. Am J Pathol 165:283–297

    CAS  PubMed  Google Scholar 

  • Lemere CA, Oh J, Stanish HA et al (2008) Cerebral amyloid‐beta protein accumulation with aging in cotton‐top tamarins: a model of early Alzheimer’s disease? Rejuvenation Res 11:321–332

    CAS  PubMed  Google Scholar 

  • Lescaudron L, Stein DG (1999) Differences in memory impairment and response to GM1 ganglioside treatment following electrolytic or ibotenic acid lesions of the nucleus basalis magnocellularis. Restor Neurol Neurosci 15:25–37

    CAS  PubMed  Google Scholar 

  • Levin ED, Rose JE, McGurk SR et al (1990) Characterization of the cognitive effects of combined muscarinic and nicotinic blockade. Behav Neural Biol 53:103–112

    CAS  PubMed  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    CAS  PubMed  Google Scholar 

  • Li Q, Cheung C, Wei R et al (2009) Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One 4:e6354

    PubMed Central  PubMed  Google Scholar 

  • Liebsch G, Linthorst AC, Neumann ID et al (1998) Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology 19:381–396

    CAS  PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    CAS  PubMed  Google Scholar 

  • Liu L, Duff K (2008) A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. J Vis Exp (21):e960

    Google Scholar 

  • Lodge DJ, Grace AA (2008) Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotox Res 14:97–104

    PubMed Central  PubMed  Google Scholar 

  • Lubow RE, Gewirtz JC (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117:87–103

    CAS  PubMed  Google Scholar 

  • Luo F, Rustay NR, Ebert U et al (2012) Characterization of 7- and 19-month-old Tg2576 mice using multimodal in vivo imaging: limitations as a translatable model of Alzheimer’s disease. Neurobiol Aging 33:933–944

    CAS  PubMed  Google Scholar 

  • Maeda J, Ji B, Irie T et al (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–10968

    CAS  PubMed  Google Scholar 

  • Marcotte ER, Pearson DM, Srivastava LK (2001) Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26:395–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markham JA, Taylor AR, Taylor SB et al (2010) Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat. Front Behav Neurosci 4:173

    PubMed Central  PubMed  Google Scholar 

  • Martínez-Téllez RI, Hernández-Torres E, Gamboa C et al (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63:794–804

    PubMed  Google Scholar 

  • McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:741–749

    CAS  PubMed  Google Scholar 

  • McGrath J, Saha S, Chant D et al (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76

    PubMed  Google Scholar 

  • McKinney WT Jr, Bunney WE Jr (1969) Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    PubMed  Google Scholar 

  • Mei L, Xiong W (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Migliore L, Fontana I, Colognato R et al (2005) Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol Aging 26:587–595

    CAS  PubMed  Google Scholar 

  • Mitchell KJ, Huang ZJ, Moghaddam B et al (2011) Following the genes: a framework for animal modelling of psychiatric disorders. BMC Biol 9:76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore H (2010) The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy. Schizophr Bull 36:1066–1072

    PubMed  Google Scholar 

  • Moran PM (1993) Differential effects of scopolamine and mecamylamine on working and reference memory in the rat. Pharmacol Biochem Behav 45:533–538

    CAS  PubMed  Google Scholar 

  • Muir WJ, Pickard BS, Blackwood DH (2008) Disrupted-in-schizophrenia-1. Curr Psychiatry Rep 10:140–147

    PubMed  Google Scholar 

  • Mulder J, Harkany T, Czollner K et al (2005) Galantamine-induced behavioral recovery after sublethal excitotoxic lesions to the rat medial septum. Behav Brain Res 163:33–41

    CAS  PubMed  Google Scholar 

  • Nag S, Yee BK, Tang F (1999) Chronic intracerebroventricular infusion of beta-amyloid (1-40) results in a selective loss of neuropeptides in addition to a reduction in choline acetyltransferase activity in the cortical mantle and hippocampus in the rat. Ann N Y Acad Sci 897:420–422

    CAS  PubMed  Google Scholar 

  • Nakamura H, Hishinuma T, Tomioka Y et al (1997) Effects of haloperidol and cocaine pretreatments on brain distribution and kinetics of [11C]methamphetamine in methamphetamine sensitized dog: application of PET to drug pharmacokinetic study. Nucl Med Biol 24:165–169

    CAS  PubMed  Google Scholar 

  • Nakamura S, Murayama N, Noshita T et al (2001) Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain Res 912:128–136

    CAS  PubMed  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nordberg A, Nilsson-Håkansson L, Adem A et al (1989) Multiple actions of THA on cholinergic neurotransmission in Alzheimer brains. Prog Clin Biol Res 317:1169–1178

    CAS  PubMed  Google Scholar 

  • O’Tuathaigh CM, Kirby BP, Moran PM et al (2010) Mutant mouse models: genotype-phenotype relationships to negative symptoms in schizophrenia. Schizophr Bull 36:271–288

    PubMed  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M et al (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    CAS  PubMed  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K et al (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    CAS  PubMed  Google Scholar 

  • Olariu A, Yamada K, Mamiya T et al (2002) Memory impairment induced by chronic intracerebroventricular infusion of beta-amyloid (1-40) involves downregulation of protein kinase C. Brain Res 957:278–286

    CAS  PubMed  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    CAS  PubMed  Google Scholar 

  • Opazo C, Luza S, Villemagne VL et al (2006) Radioiodinated clioquinol as a biomarker for beta-amyloid: Zn complexes in Alzheimer’s disease. Aging Cell 5:69–79

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Double K, Schiller GD (1989) Antidepressant effects of rolipram in a genetic animal model of depression: cholinergic supersensitivity and weight gain. Pharmacol Biochem Behav 34:691–696

    CAS  PubMed  Google Scholar 

  • Palmer AA, Dulawa SC, Mottiwala AA et al (2000) Prepulse startle deficit in the Brown Norway rat: a potential genetic model. Behav Neurosci 114:374–388

    CAS  PubMed  Google Scholar 

  • Patel NH, Vyas NS, Puri BK et al (2010) Positron emission tomography in schizophrenia: a new perspective. J Nucl Med 51:511–520

    CAS  PubMed  Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132:169–180

    CAS  Google Scholar 

  • Paylor R, Lindsay E (2006) Mouse models of 22q11 deletion syndrome. Biol Psychiatry 59:1172–1179

    CAS  PubMed  Google Scholar 

  • Pepeu G, Giovannini MG (2007) Changes in acetylcholine extracellular levels during cognitive processes. In: Westerink BH, Cremers TI (eds) Handbook of microdialysis. Methods, applications and perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Pepeu G, Rosi MC (2011) Validation of animal models of dementia: neurochemical aspects. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Pietropaolo S, Crusio WE (2009) Strain-dependent changes in acoustic startle response and its plasticity across adolescence in mice. Behav Genet 39:623–631

    PubMed  Google Scholar 

  • Podhorna J, Didriksen M (2004) The heterozygous reeler mouse: behavioural phenotype. Behav Brain Res 153:43–54

    CAS  PubMed  Google Scholar 

  • Price JC, Klunk WE, Lopresti BJ et al (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 25:1528–1547

    CAS  PubMed  Google Scholar 

  • Rabinovici GD, Jagust WJ (2009) Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav Neurol 21:117–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rankin CA, Gamblin TC (2008) Assessing the toxicity of tau aggregation. J Alzheimers Dis 14:411–416

    PubMed  Google Scholar 

  • Reisberg B, Borenstein J, Salob SP et al (1987) Behavioral symptoms in Alzheimer’s disease: phenomenology and treatment. J Clin Psychiatry 48:9–15

    PubMed  Google Scholar 

  • Reith J, Cumming P, Gjedde A (1998) Enhanced [3H]DOPA and [3H]dopamine turnover in striatum and frontal cortex in vivo linked to glutamate receptor antagonism. J Neurochem 70:1979–1985

    CAS  PubMed  Google Scholar 

  • Renã AS, Butterfield DA (2011) Spontaneous vertebrate models of Alzheimer dementia: selectively bred strains (SAM strains). In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Ribé EM, Pérez M, Puig B et al (2005) Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis 20:814–822

    PubMed  Google Scholar 

  • Riekkinen P Jr, Sirviö J, Aaltonen M et al (1990) Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial and passive avoidance learning. Pharmacol Biochem Behav 37:405–410

    CAS  PubMed  Google Scholar 

  • Roertgen KE, Parisi JE, Clark HB et al (1996) A beta‐associated cerebral angiopathy and senile plaques with neurofibrillary tangles and cerebral hemorrhage in an aged wolverine (Gulo gulo). Neurobiol Aging 17:243–247

    CAS  PubMed  Google Scholar 

  • Rofina JE, van Ederen AM, Toussaint MJ et al (2006) Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer’s disease. Brain Res 1069:216–226

    CAS  PubMed  Google Scholar 

  • Rosen RF, Walker LC, Levine H 3rd (2011) PIB binding in aged primate brain: enrichment of high-affinity sites in humans with Alzheimer’s disease. Neurobiol Aging 32:223–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakoğlu U, Upadhyay J, Chin CL et al (2011) Paradigm shift in translational neuroimaging of CNS disorders. Biochem Pharmacol 81:1374–1387

    PubMed  Google Scholar 

  • Sanchis-Segura C, Spanagel R, Henn FA et al (2005) Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol 16:267–270

    CAS  PubMed  Google Scholar 

  • Sani S, Traul D, Klink A et al (2003) Distribution, progression and chemical composition of cortical amyloid‐β deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathol 105:145–156

    CAS  PubMed  Google Scholar 

  • Santarelli L, Gobbi G, Debs PC et al (2001) Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci U S A 98:1912–1917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci 924:17–25

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman KA, Friedman E (1990) Pre‐ and post‐synaptic cholinergic dysfunction in aged rodent brain regions: new findings and an interpretive review. Int J Dev Neurosci 8:689–708

    CAS  PubMed  Google Scholar 

  • Shin J, Kepe V, Barrio JR et al (2011) The merits of FDDNP-PET imaging in Alzheimer’s disease. J Alzheimers Dis 26:135–145

    PubMed  Google Scholar 

  • Sipos E, Kurunczi A, Kasza A et al (2007) Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience 147:28–36

    CAS  PubMed  Google Scholar 

  • Sloan HL, Good M, Dunnett SB (2006) Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behav Brain Res 171:116–126

    PubMed  Google Scholar 

  • Steimer T (2011) Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci 13:495–506

    PubMed Central  PubMed  Google Scholar 

  • Striedter GF (1998) Progress in the study of brain evolution: from speculative theories to testable hypotheses. Anat Rec 253:105–112

    CAS  PubMed  Google Scholar 

  • Sturchler-Pierrat C, Abramowski D, Duke M et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94:13287–13292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunderland T, Tariot PN, Weingartner H et al (1986) Pharmacologic modelling of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10:599–610

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Martinez ZA, Hanlon FM et al (2000) Toward understanding the biology of a complex phenotype: rat strain and substrain differences in the sensorimotor gating-disruptive effects of dopamine agonists. J Neurosci 20:4325–4336

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Kuczenski R, Goins JC et al (2005) Neurochemical analysis of rat strain differences in the startle gating-disruptive effects of dopamine agonists. Pharmacol Biochem Behav 80:203–211

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Shilling PD, Breier M et al (2012) Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted sensorimotor gating in rats. Psychopharmacology (Berl) 224:349–362

    Google Scholar 

  • Sy M, Kitazawa M, LaFerla F (2011) The 3xTg-AD mouse model: reproducing and modulating plaque and tangle pathology. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Szabados T, Dul C, Majtényi K et al (2004) A chronic Alzheimer’s model evoked by mitochondrial poison sodium azide for pharmacological investigations. Behav Brain Res 154:31–40

    CAS  PubMed  Google Scholar 

  • Teipel SJ, Buchert R, Thome J et al (2011) Development of Alzheimer-disease neuroimaging-biomarkers using mouse models with amyloid-precursor protein-transgene expression. Prog Neurobiol 95:547–556

    CAS  PubMed  Google Scholar 

  • Tekirian TL, Cole GM, Russell MJ et al (1996) Carboxy terminal of beta‐amyloid deposits in aged human, canine, and polar bear brains. Neurobiol Aging 17:249–257

    CAS  PubMed  Google Scholar 

  • Toledana A, Alvarez MI (2011) Lesion‐induced vertebrate models of Alzheimer dementia. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Toyama H, Ye D, Ichise M et al (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600

    CAS  PubMed  Google Scholar 

  • Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179

    CAS  PubMed  Google Scholar 

  • Tsukada H, Harada N, Nishiyama S et al (2000) Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis. Synapse 37:95–103

    CAS  PubMed  Google Scholar 

  • Tulving E (1987) Multiple memory systems and consciousness. Hum Neurobiol 6:67–80

    CAS  PubMed  Google Scholar 

  • Uchida K, Yoshino T, Yamaguchi R et al (1995) Senile plaques and other senile changes in the brain of an American black bear. Vet Pathol 32:412–414

    CAS  PubMed  Google Scholar 

  • Urban N, Abi-Dargham A (2010) Neurochemical imaging in schizophrenia. Curr Top Behav Neurosci 4:215–242

    PubMed  Google Scholar 

  • Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17

    PubMed  Google Scholar 

  • Vale-Martínez A, Guillazo-Blanch G, Martí-Nicolovius M et al (2002) Electrolytic and ibotenic acid lesions of the nucleus basalis magnocellularis interrupt long-term retention, but not acquisition of two-way active avoidance, in rats. Exp Brain Res 142:52–66

    PubMed  Google Scholar 

  • Vallabhajosula S (2011) Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid. Semin Nucl Med 41:283–299

    PubMed  Google Scholar 

  • Valzelli L (1973) The “isolation syndrome” in mice. Psychopharmacologia 31:305–320

    CAS  PubMed  Google Scholar 

  • van Berckel BN, Kegeles LS, Waterhouse R et al (2006) Modulation of amphetamine-induced dopamine release by group II metabotropic glutamate receptor agonist LY354740 in non-human primates studied with positron emission tomography. Neuropsychopharmacology 31:967–977

    PubMed  Google Scholar 

  • Van Dam D, De Deyn PP (2006) Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov 5:956–970

    PubMed  Google Scholar 

  • Van Dam D, De Deyn PP (2011a) APP-based transgenic models: the APP23 model. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Van Dam D, De Deyn PP (2011b) The role of rodent models in the drug discovery pipeline for dementia. In: De Deyn PP, Van Dam D (eds) Animal models of dementia, 1st edn, Neuromethods series. Springer Science + Business Media, New York

    Google Scholar 

  • Van Dam D, Van Dijck A, Janssen L et al (2013) Neuropeptides in Alzheimer’s disease: from pathophysiological mechanisms to therapeutic opportunities. Curr Alzheimer Res 10(5):449–68

    PubMed  Google Scholar 

  • van der Staay FJ (2006) Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev 52:131–159

    PubMed  Google Scholar 

  • van der Staay FJ, Blokland A (1996) Behavioral differences between outbred Wistar, inbred Fischer 344, brown Norway, and hybrid Fischer 344 x brown Norway rats. Physiol Behav 60:97–109

    PubMed  Google Scholar 

  • van der Weyden L, Bradley A (2006) Mouse chromosome engineering for modeling human disease. Annu Rev Genomics Hum Genet 7:247–276

    PubMed Central  PubMed  Google Scholar 

  • Van Dijck A, Vloeberghs E, Van Dam D et al (2008) Evaluation of the APP23-model for Alzheimer’s disease in the odour paired-associate test for hippocampus-dependent memory. Behav Brain Res 190:147–151

    PubMed  Google Scholar 

  • Varty GB, Walters N, Cohen-Williams M et al (2001) Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. Eur J Pharmacol 424:27–36

    CAS  PubMed  Google Scholar 

  • Vickers JC, Dickson TC, Adlard PA et al (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165

    CAS  PubMed  Google Scholar 

  • Vidal R, Ghetti B (2011) Characterization of amyloid deposits in neurodegenerative diseases. In: Manfredi G, Kawamata H (eds) Neurodegeneration: methods and protocols, 1st edn. Springer Science + Business Media, New York

    Google Scholar 

  • Vloeberghs E, Van Dam D, Engelborghs S et al (2004) Altered circadian locomotor activity in APP23 mice: a model for BPSD disturbances. Eur J Neurosci 20:2757–2766

    PubMed  Google Scholar 

  • Vloeberghs E, Van Dam D, Franck F et al (2008) Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model. Behav Neurosci 122:491–497

    PubMed  Google Scholar 

  • Vollenweider FX, Vontobel P, Oye I et al (2000) Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res 34:35–43

    CAS  PubMed  Google Scholar 

  • Voytko ML, Tinkler GP (2004) Cognitive function and its neural mechanisms in nonhuman primate models of aging, Alzheimer disease, and menopause. Front Biosci 9:1899–1914

    CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2007) A beta oligomers – a decade of discovery. J Neurochem 101:1172–1184

    CAS  PubMed  Google Scholar 

  • Weldon DT, Rogers SD, Ghilardi JR et al (1998) Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 18:2161–2173

    CAS  PubMed  Google Scholar 

  • Wenk GL, McGann K, Hauss-Wegrzyniak B et al (2003) The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer’s disease. Neuroscience 121:719–729

    CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Au KS (1986) Cholinergic receptors in aging and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10:665–676

    CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    CAS  PubMed  Google Scholar 

  • Williams NM, O’Donovan MC, Owen MJ (2005) Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia? Schizophr Bull 31:800–805

    PubMed  Google Scholar 

  • Willott JF, Carlson S, Chen H (1994) Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behav Neurosci 108:703–713

    CAS  PubMed  Google Scholar 

  • Willott JF, Tanner L, O’Steen J et al (2003) Acoustic startle and prepulse inhibition in 40 inbred strains of mice. Behav Neurosci 117:716–727

    PubMed  Google Scholar 

  • Wils H, Kleinberger G, Pereson S et al (2012) Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol 228:67–76

    CAS  PubMed  Google Scholar 

  • Wimo A, Winblad B, Aguero-Torres H et al (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord 17:63–67

    PubMed  Google Scholar 

  • Winter C, Djodari-Irani A, Sohr R et al (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12:513–524

    CAS  PubMed  Google Scholar 

  • Wirths O, Breyhan H, Cynis H et al (2009) Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 118(4):487–496

    PubMed Central  PubMed  Google Scholar 

  • Wolf R, Matzke K, Paelchen K et al (2010) Reduction of Prepulse Inhibition (PPI) after neonatal excitotoxic lesion of the ventral thalamus in pubertal and adult rats. Pharmacopsychiatry 43:99–109

    CAS  PubMed  Google Scholar 

  • Wu LS, Cheng WC, Hou SC et al (2010) TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48:56–62

    CAS  PubMed  Google Scholar 

  • Yamada M, Chiba T, Sasabe J et al (2005) Implanted cannula-mediated repetitive administration of Abeta25-35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav Brain Res 164:139–146

    CAS  PubMed  Google Scholar 

  • Yochum CL, Bhattacharya P, Patti L et al (2010) Animal model of autism using GSTM1 knockout mice and early post-natal sodium valproate treatment. Behav Brain Res 210:202–210

    CAS  PubMed  Google Scholar 

  • Zhang S, Han D, Tan X et al (2012) Diagnostic accuracy of 18F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 66:185–198

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation Flanders (FWO), Interuniversity Poles of Attraction (IAP Network P7/16) of the Belgian Federal Science Policy Office, Methusalem excellence grant of the Flemish Government, agreement between the Institute Born-Bunge and the University of Antwerp, the Medical Research Foundation Antwerp, the Thomas Riellaerts research fund and Neurosearch Antwerp. DVD is a postdoctoral fellow of the FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debby Van Dam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Dam, D., De Deyn, P.P. (2014). Animal Models for Brain Research. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics