Skip to main content

pPLA: Patatin-Related Phospholipase As with Multiple Biological Functions

  • Chapter
  • First Online:
Phospholipases in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 20))

Abstract

The release of fatty acids from membranous and storage lipids has been implicated in a variety of cellular functions, including carbon partitioning, cell elongation, defense response, seedling establishment, and plant growth. Patatin-related proteins are the major enzymes that catalyze the release of fatty acids and are present in various organisms, including plants and mammals. The Arabidopsis genome has 13 patatin-like genes encoding proteins including three groups of patatin-related phospholipases, pPLAI, pPLAII (α,β,γ,δ,ε), and pPLAIII (α,β,γ,δ). The pPLAI, pPLAIIs, and pPLAIIIs possess phospholipase and galactolipase activities, while pPLAIIIs have an additional acyl-CoA thioesterase activity. The fourth group of patatin-related proteins possesses triacylglycerol lipase activity and includes SDP1, SDP1-L, and ATGL-L. Phenotypic analyses of Arabidopsis deficient in and overexpressing specific patatin-related genes have revealed their important roles in stress responses, plant development, and lipid homeostasis. This chapter aims to summarize current knowledge of patatin-related proteins and document their emerging importance in plant growth and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews DL, Beames B, Summers MD, Park WD (1988) Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J 252:199–206

    CAS  PubMed  Google Scholar 

  • Bao S, Miller DJ, Ma Z, Wohltmann M, Eng G, Ramanadham S et al (2004) Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced fertility. J Biol Chem 279:38194–38200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cedars A, Jenkins CM, Mancuso DJ, Gross RW (2009) Calcium-independent phospholipases in the heart: mediators of cellular signaling, bioenergetics, and ischemia-induced electrophysiologic dysfunction. J Cardiovasc Pharmacol 53:277–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhondt S, Gouzerh G, Müller A, Legrand M, Heitz T (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grienenberger E, Geoffroy P, Mutterer J, Legrand M, Heitz T (2010) The interplay of lipid acyl hydrolases in inducible plant defense. Plant Signal Behav 5:1181–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV et al (2010) A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 285:6706–6715

    Article  CAS  PubMed  Google Scholar 

  • Holk A, Rietz S, Zahn M, Quader H, Scherer GF (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang S, Cerny RE, Bhat DS, Brown SM (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol 125:573–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Cohen JC, Hobbs HH (2011) Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem 286:37085–37093

    Article  CAS  PubMed  Google Scholar 

  • Jekel PA, Hofsteenge J, Beintema JJ (2003) The patatin-like protein from the latex of Hevea brasiliensis (Hev b 7) is not a vacuolar protein. Phytochemistry 63:517–522

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CM, Yan W, Mancuso DJ, Gross RW (2006) Highly selective hydrolysis of fatty acyl-CoAs by calcium-independent phospholipase A2β. Enzyme autoacylation and acyl-CoA-mediated reversal of calmodulin inhibition of phospholipase A2 activity. J Biol Chem 281:15615–15624

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J 11:355–361

    Article  CAS  PubMed  Google Scholar 

  • Kienesberger PC, Lass A, Preiss-Landl K, Wolinski H, Kohlwein SD, Zimmermann R, Zechner R (2008) Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 283:5908–5917

    Article  CAS  PubMed  Google Scholar 

  • Kienesberger PC, Oberer M, Lass A, Zechner R (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 50:S63–S68

    Article  PubMed  Google Scholar 

  • Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY et al (2012) Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 15:691–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M et al (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  Google Scholar 

  • La Camera S, Balagué C, Göbel C, Geoffroy P, Legrand M, Feussner I et al (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    Article  PubMed  Google Scholar 

  • Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GF (2013) Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. Mol Plant 6(5):1473–1486, PMID: 23519456

    Article  CAS  PubMed  Google Scholar 

  • Li M, Bahn SC, Guo L, Musgrave W, Berg H, Welti R et al (2011) Patatin-related phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell 23:1107–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Bahn SC, Fan C, Li J, Phan T, Ortiz M et al (2013) Patatin-related phospholipase pPLAIIIδ increases seed oil content with long-chain fatty acids in Arabidopsis. Plant Physiol 162:39–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CC, Chu CF, Liu PH, Lin HH, Liang SC, Hsu WE et al (2011) Expression of an Oncidium gene encoding a patatin-like protein delays flowering in Arabidopsis by reducing gibberellin synthesis. Plant Cell Physiol 52:421–435

    Article  CAS  PubMed  Google Scholar 

  • Matos AR, Pham-Thi AT (2009) Lipid deacylating enzymes in plants: old activities, new genes. Plant Physiol Biochem 47:491–503

    Article  CAS  PubMed  Google Scholar 

  • Matos AR, d’Arcy-Lameta A, França M, Pêtres S, Edelman L, Kader J et al (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491:188–192

    Article  CAS  PubMed  Google Scholar 

  • Matos AR, Gigon A, Laffray D, Pêtres S, Zuily-Fodil Y, Pham-Thi AT (2008) Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leaves. Physiol Plant 134:110–120

    Article  CAS  PubMed  Google Scholar 

  • Moon SH, Jenkins CM, Liu X, Guan S, Mancuso DJ, Gross RW (2012) Activation of mitochondrial calcium-independent phospholipase A2γ (iPLA2γ) by divalent cations mediating arachidonate release and production of downstream eicosanoids. J Biol Chem 287:14880–14895

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK et al (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122:1439–1449

    Article  PubMed  Google Scholar 

  • Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Holk A, Scherer GF (2004) Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency. Planta 219:743–753

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Dermendjiev G, Oppermann E, Tafesse FG, Effendi Y, Holk A et al (2010) Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol Plant 3:524–538

    Article  CAS  PubMed  Google Scholar 

  • Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudolph M, Schlereth A, Körner M, Feussner K, Berndt E, Melzer M et al (2011) The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J Exp Bot 62:749–760

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    Article  CAS  PubMed  Google Scholar 

  • Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 1761:1246–1259

    Article  CAS  PubMed  Google Scholar 

  • Scherer GF, Ryu SB, Wang X, Matos AR, Heitz T (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci 15:693–700

    Article  CAS  PubMed  Google Scholar 

  • Scherer GF, Labusch C, Effendi Y (2012) Phospholipases and the network of auxin signal transduction with ABP1 and TIR1 as two receptors: a comprehensive and provocative model. Front Plant Sci 3:56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schoenborn V, Heid IM, Vollmert C, Lingenhel A, Adams TD, Hopkins PN et al (2006) The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes. Diabetes 55:1270–1275

    Article  CAS  PubMed  Google Scholar 

  • Siloto RM, Madhavji M, Wiehler WB, Burton TL, Boora PS, Laroche A et al (2008) An N-terminal fragment of mouse DGAT1 binds different acyl-CoAs with varying affinity. Biochem Biophys Res Commun 373:350–354

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Baranwal V, Shankar A, Kanwar P, Ranjan R, Yadav S et al (2012) Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development. PLoS One 7:e30947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19

    Article  CAS  PubMed  Google Scholar 

  • Sookoian S, Pirola CJ (2012) PNPLA3, the triacylglycerol synthesis/hydrolysis/storage dilemma, and nonalcoholic fatty liver disease. World J Gastroenterol 18:6018–6026

    Article  CAS  PubMed  Google Scholar 

  • van Tienhoven M, Atkins J, Li Y, Glynn P (2002) Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J Biol Chem 277:20942–20948

    Article  PubMed  Google Scholar 

  • Weselake RJ, Madhavji M, Szarka SJ, Patterson NA, Wiehler WB, Nykiforuk CL et al (2006) Acyl-CoA-binding and self-associating properties of a recombinant 13.3 kDa N-terminal fragment of diacylglycerol acyltransferase-1 from oilseed rape. BMC Biochem 7:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ (2006) Characterization of the human patatin-like phospholipase family. J Lipid Res 47:1940–1949

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Jenkins CM, Han X, Mancuso DJ, Sims HF, Yang K et al (2005) The highly selective production of 2-arachidonoyl lysophosphatidylcholine catalyzed by purified calcium-independent phospholipase A2γ: identification of a novel enzymatic mediator for the generation of a key branch point intermediate in eicosanoid signaling. J Biol Chem 280:26669–26679

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zheng Y, Bahn SC, Pan X, Li M, Vu H et al (2012) The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana. Mol Plant 5:452–460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by grants from Natural Science Foundation (MCB-0922879 and IOS-0818740 to X.W.) and work on lipid production was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Award # DE-SC0001295 to X.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoyin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, M., Wang, X. (2014). pPLA: Patatin-Related Phospholipase As with Multiple Biological Functions. In: Wang, X. (eds) Phospholipases in Plant Signaling. Signaling and Communication in Plants, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42011-5_5

Download citation

Publish with us

Policies and ethics