Skip to main content

PLD: Phospholipase Ds in Plant Signaling

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 20))

Abstract

Membrane lipids are rich sources for generating intracellular messengers, and the activation of phospholipases is often an early step in the messenger production. Phospholipase D (PLD) is a major family of membrane lipid-hydrolyzing enzymes in plants, and PLD activity increases under a wide range of stress conditions. Recent studies have revealed extensive biochemical and functional heterogeneities of PLDs. Cellular effectors, including Ca2+, phosphoinositides, and oleic acid, bind to specific PLDs and differentially modulate their activities. The differential activation of specific PLDs plays crucial roles in the temporal and spatial production of phosphatidic acid, a class of potent lipid mediators involved in plant growth and stress responses. PLDs also interact directly with proteins involved in various processes, including cell signaling, central metabolism, and cytoskeleton reorganization. Different PLDs have unique and overlapping functions in plant growth, development, and stress responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allgyer TT, Wells MA (1979) Phospholipase D from savoy cabbage: purification and preliminary kinetic characterization. Biochemistry 18:5348–5353

    Article  CAS  PubMed  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C et al (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    Article  CAS  PubMed  Google Scholar 

  • Austin-Brown SL, Chapman KD (2002) Inhibition of phospholipase D alpha by N-acylethanolamines. Plant Physiol 129:1892–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bargmann BO, Laxalt AM, Riet BT, Schouten E, van Leeuwen W, Dekker HL et al (2006) LePLDbeta1 activation and relocalization in suspension-cultured tomato cells treated with xylanase. Plant J 45:358–368

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BO, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C et al (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  CAS  PubMed  Google Scholar 

  • Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD, Overduin M (2001) Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol 3:613–618

    Article  CAS  PubMed  Google Scholar 

  • Choi S-Y, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, Ramírez-Chávez E, Herrera-Estrella L (2006) Phospholipase Dζ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    Article  PubMed  Google Scholar 

  • den Hartog M, Verhoef N, Munnik T (2003) Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol 132:311–317

    Article  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R et al (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry 67:1907–1924

    Article  CAS  PubMed  Google Scholar 

  • Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang X (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957

    Article  CAS  PubMed  Google Scholar 

  • Distefano AM, Scuffi D, Garcia-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Ddelta is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907

    Article  CAS  PubMed  Google Scholar 

  • Dubots E, Audry M, Yamaryo Y, Bastien O, Ohta H, Breton C et al (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285:6003–6011

    Article  CAS  PubMed  Google Scholar 

  • Dyer JH, Ryu SB, Wang X (1994) Multiple forms of phospholipase D following germination and during leaf development of castor bean. Plant Physiol 105:715–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dyer JH, Zheng S, Wang X (1996) Structural heterogeneity of phospholipase D in 10 dicots. Biochem Biophys Res Commun 221:31–36

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Potocky M, Cvrckova F, Zarsky V (2002) Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan L, Zheng S, Cui D, Wang X (1999) Subcellular distribution and tissue expression of phospholipase Dalpha, Dbeta, and Dgamma in Arabidopsis. Plant Physiol 119:1371–1378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S et al (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286:13336–13345

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W et al (2012a) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Ddelta to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R et al (2012b) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286–8296

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J et al (1995) Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 270:29640–29643

    Article  CAS  PubMed  Google Scholar 

  • Hanahan DJ, Chaikoff IL (1947) A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping. J Biol Chem 169:699–705

    CAS  PubMed  Google Scholar 

  • Heller M (1978) Phospholipase D. Adv Lipid Res 16:267–326

    CAS  PubMed  Google Scholar 

  • Heller M, Mozes N, Peri I, Maes E (1974) Phospholipase D from peanut seeds: IV. Final purification and some properties of the enzyme. Biochim Biophys Acta 369:397–410

    Article  CAS  Google Scholar 

  • Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D (2001) Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol 8:526–530

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008a) The effect of phospholipase Dalpha3 on Arabidopsis response to hyperosmotic stress and glucose. Plant Signal Behav 3:1099–1100

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong Y, Zheng S, Wang X (2008b) Dual functions of phospholipase Dalpha1 in plant response to drought. Mol Plant 1:262–269

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R et al (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Tao F, Li W (2013) Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One 8:e65687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jost R, Berkowitz O, Shaw J, Masle J (2009) Biochemical characterization of two wheat phosphoethanolamine N-methyltransferase isoforms with different sensitivities to inhibition by phosphatidic acid. J Biol Chem 284:31962–31971

    Article  CAS  PubMed  Google Scholar 

  • Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE et al (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3:675–678

    Article  CAS  PubMed  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J 26:595–605

    Article  CAS  PubMed  Google Scholar 

  • Kusner DJ, Barton JA, Wen KK, Wang X, Rubenstein PA, Iyer SS (2002) Regulation of phospholipase D activity by actin. Actin exerts bidirectional modulation of Mammalian phospholipase D activity in a polymerization-dependent, isoform-specific manner. J Biol Chem 277:50683–50692

    Article  CAS  PubMed  Google Scholar 

  • Lee MH (1989) Phospholipase D of rice bran. I. Purification and characterization. Plant Sci 59:25–33

    Article  CAS  Google Scholar 

  • Lee J, Welti R, Roth M, Schapaugh WT, Li J, Trick HN (2012) Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dalpha in soybean seed. Plant Biotechnol J 10:164–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  PubMed  Google Scholar 

  • Li M, Qin C, Welti R, Wang X (2006) Double knockouts of phospholipases Dzeta1 and Dzeta2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Wang R, Li M, Li L, Wang C, Welti R et al (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791:927–935

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang C, Yang Y, Hu X (2010) Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape. BMC Plant Biol 10:117

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q et al (2013) Increased expression of phospholipase Dalpha1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. Plant Biotechnol J 11:380–389

    Article  CAS  PubMed  Google Scholar 

  • McGee JD, Roe JL, Sweat TA, Wang X, Guikema JA, Leach JE (2003) Rice phospholipase D isoforms show differential cellular location and gene induction. Plant Cell Physiol 44:1013–1026

    Article  CAS  PubMed  Google Scholar 

  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599

    Article  CAS  PubMed  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G et al (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Pappan K, Wang X (1999) Plant phospholipase Dalpha is an acidic phospholipase active at near-physiological Ca(2+) concentrations. Arch Biochem Biophys 368:347–353

    Article  CAS  PubMed  Google Scholar 

  • Pappan K, Qin W, Dyer JH, Zheng L, Wang X (1997a) Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDbeta, from Arabidopsis. J Biol Chem 272:7055–7061

    Article  CAS  PubMed  Google Scholar 

  • Pappan K, Zheng S, Wang X (1997b) Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J Biol Chem 272:7048–7054

    Article  CAS  PubMed  Google Scholar 

  • Pappan K, Austin-Brown S, Chapman KD, Wang X (1998) Substrate selectivities and lipid modulation of plant phospholipase D alpha, -beta, and -gamma. Arch Biochem Biophys 353:131–140

    Article  CAS  PubMed  Google Scholar 

  • Pleskot R, Potocky M, Pejchar P, Linek J, Bezvoda R, Martinec J et al (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

    Article  CAS  PubMed  Google Scholar 

  • Pleskot R, Li J, Zárský V, Potocký M, Staiger CJ (2013) Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18:496–504

    Article  CAS  PubMed  Google Scholar 

  • Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerström M, Andersson MX (2013) Arabidopsis phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol 163:896–906

    Article  CAS  PubMed  Google Scholar 

  • Potocky M, Elias M, Profotova B, Novotna Z, Valentova O, Zarsky V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    CAS  PubMed  Google Scholar 

  • Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J Biol Chem 272:28267–28273

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Wang C, Wang X (2002) Kinetic analysis of Arabidopsis phospholipase Ddelta. Substrate preference and mechanism of activation by Ca2+ and phosphatidylinositol 4,5-biphosphate. J Biol Chem 277:49685–49690

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Li M, Qin W, Bahn SC, Wang C, Wang X (2006) Expression and characterization of Arabidopsis phospholipase Dgamma2. Biochim Biophys Acta 1761:1450–1458

    Article  CAS  PubMed  Google Scholar 

  • Quarles RH, Dawson RM (1969) The distribution of phospholipase D in developing and mature plants. Biochem J 112:787–794

    CAS  PubMed  Google Scholar 

  • Romanov GA, Kieber JJ, Schmulling T (2002) A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett 515:39–43

    Article  CAS  PubMed  Google Scholar 

  • Roughan PG, Slack CR (1976) Is phospholipase D really an enzyme? A comparison of in situ and in vitro activities. Biochim Biophys Acta 431:86–95

    Article  CAS  PubMed  Google Scholar 

  • Ryu SB, Wang X (1998) Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Biochim Biophys Acta 1393:193–202

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Zheng S, Li W, Huang B, Wang X (2001) Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant J 28:135–144

    Article  CAS  PubMed  Google Scholar 

  • Sarri E, Servitja J-M, Picatoste F, Claro E (1996) Two phosphatidylethanol classes separated by thin layer chromatography are produced by phospholipase D in rat brain hippocampal slices. FEBS Lett 393:303–306

    Article  CAS  PubMed  Google Scholar 

  • Simoes I, Mueller EC, Otto A, Bur D, Cheung AY, Faro C et al (2005) Molecular analysis of the interaction between cardosin A and phospholipase D(alpha). Identification of RGD/KGE sequences as binding motifs for C2 domains. FEBS J 272:5786–5798

    Article  CAS  PubMed  Google Scholar 

  • Stuckey JA, Dixon JE (1999) Crystal structure of a phospholipase D family member. Nat Struct Biol 6:278–284

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Larsen PB, van der Does D, van Himbergen JA, Munnik T (2007) Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot 58:3905–3914

    Article  CAS  PubMed  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, Masuda C et al (2012) Cooperative function of PLDdelta and PLDalpha1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waite M (1999) The PLD superfamily: insights into catalysis. Biochim Biophys Acta 1439:187–197

    Article  CAS  PubMed  Google Scholar 

  • Waksman M, Eli Y, Liscovitch M, Gerst JE (1996) Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem 271:2361–2364

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B et al (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant Microbe Interact 18:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Dyer JH, Zheng L (1993) Purification and immunological analysis of phospholipase D from castor bean endosperm. Arch Biochem Biophys 306:486–494

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu L, Zheng L (1994) Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem 269:20312–20317

    CAS  PubMed  Google Scholar 

  • Wang X, Wang C, Sang Y, Zheng L, Qin C (2000) Determining functions of multiple phospholipase Ds in stress response of Arabidopsis. Biochem Soc Trans 28:813–816

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE et al (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K, Kurimoto L et al (2009) Suppression of a phospholipase D gene, OsPLDbeta1, activates defense responses and increases disease resistance in rice. Plant Physiol 150:308–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaryo Y, Dubots E, Albrieux C, Baldan B, Block MA (2008) Phosphate availability affects the tonoplast localization of PLDzeta2, an Arabidopsis thaliana phospholipase D. FEBS Lett 582:685–690

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F et al (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R et al (2003) The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R et al (2009) Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Wen B, Li W, Hong Y, Wang X (2010) Plant phospholipase D. In: Munnik T (ed) Lipid signaling in plants. Springer, Berlin, pp 39–62

    Chapter  Google Scholar 

  • Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M et al (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24:4555–4576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wang C, Bedair M, Welti R, Sumner LW, Baxter I, Wang X (2011) Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS One 6:e28086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Zhou D, Zhang Q, Zhang W (2012) Genomic analysis of phospholipase D family and characterization of GmPLDalphas in soybean (Glycine max). J Plant Res 125:569–578

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X (2013) Arabidopsis phospholipase Dbeta1 modulates defense responses to bacterial and fungal pathogens. New Phytol 199:228–240

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Krishnamoorthi R, Zolkiewski M, Wang X (2000) Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase dalpha and beta. J Biol Chem 275:19700–19706

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Shan J, Krishnamoorthi R, Wang X (2002) Activation of plant phospholipase Dbeta by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action. Biochemistry 41:4546–4553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work resulting from Wang laboratory was supported by grants from the National Science Foundation Grant IOS-0818740, the US Department of Agriculture Grant 2007-35318-18393, and the US Department of Energy Grant DE-SC0001295. We thank Brian Fanella for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Guo, L., Wang, G., Li, M. (2014). PLD: Phospholipase Ds in Plant Signaling. In: Wang, X. (eds) Phospholipases in Plant Signaling. Signaling and Communication in Plants, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42011-5_1

Download citation

Publish with us

Policies and ethics