Skip to main content

Electrodynamics of Radiating Charges in a Gravitational Field

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

  • 5057 Accesses

Abstract

The electrodynamics of a radiating charge and its electromagnetic field based upon the Lorentz–Abraham–Dirac (GlossaryTerm

LAD

) equation are discussed both with reference to an inertial reference frame and a uniformly accelerated reference frame. It is demonstrated that energy and momentum are conserved during runaway motion of a radiating charge and during free fall of a charge in a field of gravity. This does not mean that runaway motion is really happening. It may be an unphysical solution of the GlossaryTerm

LAD

equation of motion of a radiating charge due to the unrealistic point particle model of the charge upon which it is based. However it demonstrates the consistency of classical electrodynamics, including the GlossaryTerm

LAD

equation which is deduced from Maxwell’s equations and the principle of energy-momentum conservation applied to a radiating charge and its electromagnetic field. The decisive role of the Schott energy in this connection is made clear and an answer is given to the question: What sort of energy is the Schott energy and where is it found? It is the part of the electromagnetic field energy which is proportional to (minus) the scalar product of the velocity and acceleration of a moving accelerated charged particle. In the case of the electromagnetic field of a point charge it is localized at the particle. This energy is negative if the acceleration is in the same direction as the velocity and positive if it is in the opposite direction. During runaway motion the Schott energy becomes more and more negative and in the case of a charged particle with finite extension, it is localized in a region with increasing extension surrounding the particle. The Schott energy provides the radiated energy of a freely falling charge. Also it is pointed out that a proton and a neutron fall with the same acceleration in a uniform gravitational field, although the proton radiates and the neutron does not. It is made clear that the question as to whether or not a charge radiates has a reference-dependent answer. An accelerated charge is not observed to radiate by an observer comoving with the charge, although an inertial observer finds that it radiates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LAD:

Lorentz–Abraham–Dirac

LL:

Landau–Lifschitz

References

  1. H.A. Lorentz: The Theory of Electrons (Dover, New York 1952), p. 49, based upon lectures given by Lorentz at Columbia University in 1906

    Google Scholar 

  2. M. Abraham: Theorie der Elektrizität, Vol. 2 (Teubner, Leipzig 1905), Eq. (85)

    Google Scholar 

  3. M. von Laue: Die Wellenstrahlung einer bewegten Punktladung nach dem Relativitätsprinzip, Ann. Phys. 28, 436–442 (1909)

    Google Scholar 

  4. P.A.M. Dirac: Classical theory of radiating electrons, Proc. R. Soc. Lond. 167, 148–169 (1938)

    Google Scholar 

  5. W.T. Grandy Jr.: Relativistic Quantum Mechanics of Leptons and Fields (Kluwer Academic, Dordrecht 1991) p. 367

    Google Scholar 

  6. P. Yi: Quenched Hawking radiation and the black hole pair-creation rate, ArXiv: gr-qc/9509031

    Google Scholar 

  7. E. Eriksen, Ø. Grøn: Electrodynamics of hyperbolically accelerated charges. IV: Energy-momentum conservation of radiating charged particles, Ann. Phys. 297, 243–294 (2002)

    Google Scholar 

  8. F. Rohrlich In: Lectures in Theoretical Physics, Vol. 2, ed. by W.E. Brittain, B.W. Downs (Interscience, New York 1960)

    Google Scholar 

  9. E. Eriksen, Ø. Grøn: On the energy and momentum of an accelerated charged particle and the sources of radiation, Eur. J. Phys. 28, 401–407 (2007)

    Google Scholar 

  10. G.A. Schott: On the motion of the Lorentz electron, Philos. Mag. 29, 49–69 (1915)

    Google Scholar 

  11. F. Rohrlich: The equations of motion of classical charges, Ann. Phys. 13, 93–109 (1961)

    Google Scholar 

  12. C. Teitelboim: Splitting of the Maxwell tensor: Radiation reaction without advanced fields, Phys. Rev. D1, 1572–1582 (1970)

    Google Scholar 

  13. P. Pearle: Classical electron models. In: Electromagnetism: Paths to Research, ed. by T. Tepliz (Plenum, New York 1982) pp. 211–295

    Google Scholar 

  14. Ø. Grøn: The significance of the Schott energy for energy-momentum conservation of a radiating charge obeying the Lorentz–Abraham–Dirac equation, Am. J. Phys. 79, 115–122 (2011)

    Google Scholar 

  15. E.G.P. Rowe: Structure of the energy tensor in classical electrodynamics ofpoint particles, Phys. Rev. D18, 3639–3654 (1978)

    Google Scholar 

  16. D.R. Rowland: Physical interpretation of the Schott energy of an accelerating point charge and the question of whether a uniformly accelerating charge accelerates, Eur. J. Phys. 31, 1037–1051 (2010)

    Google Scholar 

  17. H.L. Pryce: The electromagnetic energy of a point charge, Proc. R. Soc. Lond. 168, 389–401 (1938)

    Google Scholar 

  18. C.J. Eliezer, A.W. Mailvaganam: On the classical theory of radiating electrons, Proc. Camb. Philos. Soc. 41, 184–186 (1945)

    Google Scholar 

  19. A.O. Barut: Electrodynamics and Classical Theory of Fields and Particles (Macmillan, New York 1964) p. 196

    Google Scholar 

  20. H. Levine, E.J. Moniz, D.H. Sharp: Motion of extended charges in classical electrodynamics, Am. J. Phys. 45, 75–79 (1977)

    Google Scholar 

  21. E.J. Moniz, D.H. Sharp: Radiation reaction in nonrelativistic quantum electrodynamics, Phys. Rev. D 15, 2850–2865 (1977)

    Google Scholar 

  22. E. Tirapequi: On the Lorenz–Dirac equation for a classical charged particle, Am. J. Phys. 46, 634–637 (1978)

    Google Scholar 

  23. N.P. Klepikov: Radiation damping forces and radiation from charged particles, Sov. Phys. Usp. 46, 506–520 (1985)

    Google Scholar 

  24. J.L. Anderson: Asymptotic conditions of motion for radiating charged particles, Phys. Rev. D 56, 4675–4688 (1997)

    Google Scholar 

  25. E.E. Flanagan, R.M. Wald: Does back reaction enforce the averaged null energy condition in semiclassical gravity?, Phys. Rev. D 54, 6233–6283 (1996)

    Google Scholar 

  26. J.A. Heras: Preacceleration without radiation: The nonexistence of preradiation phenomenon, Am. J. Phys. 74, 1025–1030 (2006)

    Google Scholar 

  27. E. Eriksen, Ø. Grøn: Does preradiation exist?, Phys. Scr. 76, 60–63 (2007)

    Google Scholar 

  28. T.C. Bradbury: Radiation damping in classical electrodynamics, Ann. Phys. 19(323), 347 (1962)

    Google Scholar 

  29. G.N. Plass: Classical electrodynamic equations of motion with radiative reaction, Rev. Mod. Phys. 33, 37–62 (1961)

    Google Scholar 

  30. E. Eriksen, Ø. Grøn: The significance of the Schott energy in the electrodynamics of charged particles and their fields, Indian J. Phys. 82, 1113–1137 (2008)

    Google Scholar 

  31. E. Eriksen, Ø. Grøn: Electrodynamics of hyperbolically accelerated charges. V: The field of a charge in the Rindler space and the Milne space, Ann. Phys. 313, 147–196 (2004)

    Google Scholar 

  32. B.S. DeWitt, C.M. DeWitt: Falling charges, Physics 1, 3–20 (1964)

    Google Scholar 

  33. F. Rohrlich: The principle of equivalence, Ann. Phys. 22, 169–191 (1963)

    Google Scholar 

  34. A. Kovetz, G.E. Tauber: Radiation from an accelerated charge and the principle of equivalence, Am. J. Phys. 37, 382–384 (1969)

    Google Scholar 

  35. V.L. Ginzburg: Radiation and radiation friction force in uniformly accelerated motion of a charge, Sov. Phys. Usp. 12, 565–574 (1970)

    Google Scholar 

  36. D.G. Boulware: Radiation from a uniformly accelerated charge, Ann. Phys. 124, 169–188 (1980)

    Google Scholar 

  37. M. Kretzschmar, W. Fugmann: The electromagnetic field of an accelerated charge in the proper reference frame of a noninertial observer, Nuovo Cim. B103, 389–412 (1989)

    Google Scholar 

  38. W. Fugmann, M. Kretzschmar: Classical electromagnetic radiation in noninertial reference frames, Nuovo Cim. B106, 351–373 (1991)

    Google Scholar 

  39. T. Hirayama: Classical radiation formula in the Rindler frame, Prog. Theor. Phys. 108, 679–688 (2002)

    Google Scholar 

  40. R.T. Hammond: Relativistic particle motion and radiation reaction in electrodynamics, Electron. J. Theor. Phys. 7, 221–258 (2010)

    Google Scholar 

  41. L.D. Landau, E.M. Lifschitz: The Classical Theory of Fields (Pergamon Addison-Wesley, Reading 1971), equation 76.1

    Google Scholar 

  42. G.W. Ford, R.F. O’Connell: Radiation reaction in electrodynamics and the elimination of runaway solutions, Phys. Lett. A 157, 217–220 (1991)

    Google Scholar 

  43. G.W. Ford, R.F. O’Connell: Total power radiated by an accelerated charge, Phys. Lett. A 158, 31–32 (1991)

    Google Scholar 

  44. G.W. Ford, R.F. O’Connell: Structure effects on the radiation emitted from an electron, Phys. Rev. A 44, 6386–6387 (1991)

    Google Scholar 

  45. R.F. O’Connell: The equation of motion of an electron, Phys. Lett. A 313, 491–497 (2003)

    Google Scholar 

  46. J. Heras, R.F. O’Connell: Generalization of the Schott energy in electrodynamic radiation theory, Am. J. Phys. 74, 150–153 (2006)

    Google Scholar 

  47. A.D. Yaghjian: Relativistic Dynamics of a Charged Sphere, Lecture Notes in Physics (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  48. R.T. Hammond: New approach to radiation reaction in classical electrodynamics, arXiv: 0902.4231 (2009)

    Google Scholar 

  49. A.O. Barut: Lorentz–Dirac equation and energy conservation for radiating electrons, Phys. Lett. 131, 11–12 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Grøn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grøn, Ø. (2014). Electrodynamics of Radiating Charges in a Gravitational Field. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics