Skip to main content

Gravity, Geometry, and the Quantum

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

  • 5040 Accesses

Abstract

There are various indications that finding a quantum theory of gravity is important for a full understanding of fundamental physics. Loop quantum gravity is one possibility for such a quantum theory. In the following, we explain its origin in a gauge theoretic reformulation of gravity, and its status as a quantum theory of geometry. An overview is given over Einstein’s equations in the quantum theory. As an example for an application of loop quantum gravity, the quantum theory of certain black hole horizons is sketched. We close with an outlook on current research and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADM:

Arnowitt, Deser, Misner

LQG:

loop quantum gravity

QFT:

quantum field theory

References

  1. A. Ashtekar: New variables for classical and quantum gravity, Phys. Rev. Lett. 57, 2244 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Ashtekar: New variables for classical and quantum gravity, Phys. Rev. D 36, 1587–1603 (1987)

    Google Scholar 

  3. R. Penrose: On the nature of quantum geometry (talk). In: Magic Without Magic, ed. by J.R. Klauder (W.H.Freemann, San Francisco 1972) pp. 333–354

    Google Scholar 

  4. C. Rovelli, L. Smolin: Loop space representation of quantum general relativity, Nucl. Phys. B 331, 80 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Rovelli, L. Smolin: Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442, 593 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C. Rovelli, L. Smolin: Erratum, Nucl. Phys. B 456, 753 (1995)

    Google Scholar 

  7. A. Ashtekar, J. Lewandowski: Quantum theory of geometry. 1: Area operators, Class. Quantum Gravity 14, A55 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Ashtekar, J. Lewandowski: Quantum theory of geometry. 2. Volume operators, Adv. Theor. Math. Phys. 1, 388 (1998)

    Google Scholar 

  9. M.P. Reisenberger, C. Rovelli: ’Sum over surfaces’ form of loop quantum gravity, Phys. Rev. D 56, 3490 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Engle, R. Pereira, C. Rovelli: The loop-quantum-gravity vertex-amplitude, Phys. Rev. Lett. 99, 161301 (2007)

    Google Scholar 

  11. J. Engle, E. Livine, R. Pereira, C. Rovelli: LQG vertex with finite Immirzi parameter, Nucl. Phys. B 799, 136 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. W. Kaminski, M. Kisielowski, J. Lewandowski: Spin-foams for all loop quantum gravity, Class. Quantum Gravity 27, 095006 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. W. Kaminski, M. Kisielowski, J. Lewandowski: Erratum, Class. Quantum Gravity 29, 049502 (2012)

    Google Scholar 

  14. W. Kaminski, M. Kisielowski, J. Lewandowski: The EPRL intertwiners, corrected partition function, Class. Quantum Gravity 27, 165020 (2010)

    Google Scholar 

  15. W. Kaminski, M. Kisielowski, J. Lewandowski: Erratum, Class. Quantum Gravity 29, 049501 (2012)

    Google Scholar 

  16. E. Alesci, T. Thiemann, A. Zipfel: Linking covariant and canonical LQG: New solutions to the Euclidean scalar constraint, Phys. Rev. D 86, 024017 (2012)

    Google Scholar 

  17. M. Bojowald: Loop quantum cosmology, Living Rev. Relativ. 11, 4 (2008)

    Google Scholar 

  18. M. Bojowald, G.M. Hossain, M. Kagan, S. Shankaranarayanan: Anomaly freedom in perturbative loop quantum gravity, Phys. Rev. D 78, 063547 (2008)

    Google Scholar 

  19. A. Ashtekar, T. Pawlowski, P. Singh: Quantum nature of the big bang, Phys. Rev. Lett. 96, 141301 (2006)

    Google Scholar 

  20. A. Ashtekar, W. Kaminski, J. Lewandowski: Quantum field theory on a cosmological, quantum space-time, Phys. Rev. D 79, 064030 (2009)

    Google Scholar 

  21. W. Kaminski, J. Lewandowski, T. Pawlowski: Physical time and other conceptual issues of QG on the example of LQC, Class. Quantum Gravity 26, 035012 (2009)

    Google Scholar 

  22. A. Ashtekar, J. Lewandowski: Background independent quantum gravity: A status report, Class. Quantum Gravity 21, R53 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. T. Thiemann: Modern Canonical Quantum General Relativity (Cambridge Univ. Press, Cambridge 2007)

    Google Scholar 

  24. C. Rovelli: Loop quantum gravity, Living Rev. Relativ. 11, 5 (2008)

    Google Scholar 

  25. R. Gambini, J. Pullin: A First Course in Loop Quantum Gravity (Oxford Univ. Press, Oxford 2011)

    Google Scholar 

  26. R. Arnowitt, S. Deser, C.W. Misner: Canonical variables for general relativity, Phys. Rev. 117(6), 1595–1602 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J.F.G. Barbero: Real Ashtekar variables for Lorentzian signature space times, Phys. Rev. D 51, 5507 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Immirzi: Real and complex connections for canonical gravity, Class. Quantum Gravity 14, L177 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Holst: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action, Phys. Rev. D 53, 5966 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Perez, C. Rovelli: Physical effects of the Immirzi parameter, Phys. Rev. D 73, 044013 (2006)

    Google Scholar 

  31. S. Alexandrov: SO(4,C) covariant Ashtekar–Barbero gravity and the Immirzi parameter, Class. Quantum Gravity 17, 4255 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Alexandrov: On choice of connection in loop quantum gravity, Phys. Rev. D 65, 024011 (2002)

    Google Scholar 

  33. S. Alexandrov, E.R. Livine: SU(2) loop quantum gravity seen from covariant theory, Phys. Rev. D 67, 044009 (2003)

    Google Scholar 

  34. E.R. Livine: Projected spin networks for Lorentz connection: Linking spin foams and loop gravity, Class. Quantum Gravity 19, 5525 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. F. Cianfrani, G. Montani: Towards loop quantum gravity without the time gauge, Phys. Rev. Lett. 102, 091301 (2009)

    Google Scholar 

  36. F. Cianfrani, G. Montani: The role of time gauge in quantizing gravity, Proceedings of the Third Stueckelberg Workshop on Relativistic Field Theories, ed. by N. Carlevaro, G.V. Vereshchagin, R. Ruffini (Cambridge Sc. Publishers, Cambridge 2010)

    Google Scholar 

  37. F. Cianfrani, G. Montani: The Immirzi parameter from an external scalar field, Phys. Rev. D 80, 084040 (2009)

    Google Scholar 

  38. M. Geiller, M. Lachieze-Rey, K. Noui, F. Sardelli: A Lorentz-covariant connection for canonical gravity, SIGMA 7, 083 (2011)

    Google Scholar 

  39. M. Geiller, M. Lachieze-Rey, K. Noui: A new look at Lorentz-covariant loop quantum gravity, Phys. Rev. D 84, 044002 (2011)

    Google Scholar 

  40. N. Bodendorfer, T. Thiemann, A. Thurn: New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis, Class. Quantum Gravity 30, 045001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. N. Bodendorfer, T. Thiemann, A. Thurn: New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis, Class. Quantum Gravity 30, 045002 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. N. Bodendorfer, T. Thiemann, A. Thurn: New variables for classical and quantum gravity in all dimensions III. Quantum theory, Class. Quantum Gravity 30, 045003 (2013)

    Google Scholar 

  43. N. Bodendorfer, T. Thiemann, A. Thurn: New variables for classical and quantum gravity in all dimensions IV. Matter coupling, Class. Quantum Gravity 30, 045004 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S. Carlip: Quantum Gravity in 2+1 Dimensions (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  45. T. Thiemann: Kinematical Hilbert spaces for Fermionic and Higgs quantum field theories, Class. Quantum Gravity 15, 1487 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. Ashtekar, C.J. Isham: Inequivalent observable algebras: Another ambiguity in field quantization, Phys. Lett. B 274, 393 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, T. Thiemann: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys. 36, 6456 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. J. Lewandowski, A. Okolow, H. Sahlmann, T. Thiemann: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras, Commun. Math. Phys. 267, 703 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. C. Fleischhack: Representations of the Weyl algebra in quantum geometry, Commun. Math. Phys. 285, 67 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A. Ashtekar, J. Lewandowski: Projective techniques and functional integration for gauge theories, J. Math. Phys. 36, 2170 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. J. Lewandowski: Volume and quantizations, Class. Quantum Gravity 14, 71 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. B. Dittrich, T. Thiemann: Are the spectra of geometrical operators in loop quantum gravity really discrete?, J. Math. Phys. 50, 012503 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. C. Rovelli: Comment on: B. Dittrich, T. Thiemann: Are the spectra of geometrical operators in loop quantum gravity really discrete?, arXiv:0708.2481

    Google Scholar 

  54. C. Rovelli: Area is the length of Ashtekar’s triad field, Phys. Rev. D 47, 1703 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Brunnemann, D. Rideout: Properties of the volume operator in loop quantum gravity, I. Results, Class. Quantum Gravity 25, 065001 (2008)

    Google Scholar 

  56. T. Thiemann: Closed formula for the matrix elements of the volume operator in canonical quantum gravity, J. Math. Phys. 39, 3347 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. J. Brunnemann, T. Thiemann: Simplification of the spectral analysis of the volume operator in loop quantum gravity, Class. Quantum Gravity 23, 1289 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. J. Brunnemann, D. Rideout: Oriented matroids – combinatorial structures underlying loop quantum gravity, Class. Quantum Gravity 27, 205008 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. J. Brunnemann, D. Rideout: Spectral analysis of the volume operator in loop quantum gravity, 11th Marcel Grossmann Meet. on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Vol. MG11, ed. by H. Kleinert, R.T. Jantzen, R. Ruffini (World Scientific, Berlin 2006)

    Google Scholar 

  60. L. Freidel, E.R. Livine: The fine structure of SU(2) intertwiners from U(N) representations, J. Math. Phys. 51, 082502 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. E. Bianchi, P. Dona, S. Speziale: Polyhedra in loop quantum gravity, Phys. Rev. D 83, 044035 (2011)

    Google Scholar 

  62. E. Bianchi: Black hole entropy, loop gravity, and polymer physics, Class. Quantum Gravity 28, 114006 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. E. Bianchi, H.M. Haggard: Discreteness of the volume of space from Bohr–Sommerfeld quantization, Phys. Rev. Lett. 107, 011301 (2011)

    Google Scholar 

  64. L. Freidel, S. Speziale: Twisted geometries: A geometric parametrisation of SU(2) phase space, Phys. Rev. D 82, 084040 (2010)

    Google Scholar 

  65. C. Rovelli, S. Speziale: On the geometry of loop quantum gravity on a graph, Phys. Rev. D 82, 044018 (2010)

    Google Scholar 

  66. B. Dittrich, J.P. Ryan: Phase space descriptions for simplicial 4-D geometries, Class. Quantum Gravity 28, 065006 (2011)

    Google Scholar 

  67. C. Rovelli: GPS observables in general relativity, Phys. Rev. D 65, 044017 (2002)

    Google Scholar 

  68. B. Dittrich: Partial and complete observables for canonical general relativity, Class. Quantum Gravity 23, 6155 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. J.C. Baez: Spin network states in gauge theory, Adv. Math. 117, 253 (1996)

    Google Scholar 

  70. C. Rovelli, L. Smolin: Spin networks and quantum gravity, Phys. Rev. D 52, 5743 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  71. C. Rovelli: Quantum Gravity (Cambridge Univ. Press, Cambridge 2004)

    Google Scholar 

  72. T. Thiemann: Quantum spin dynamics (QSD), Class. Quantum Gravity 15, 839 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. T. Thiemann: Quantum spin dynamics (QSD) 2, Class. Quantum Gravity 15, 875 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. T. Thiemann: QSD 3: Quantum constraint algebra and physical scalar product in quantum general relativity, Class. Quantum Gravity 15, 1207 (1998)

    Google Scholar 

  75. C. Rovelli: Quantum gravity as a ’sum over surfaces’, Nucl. Phys. Proc. Suppl. 57, 28 (1997)

    Google Scholar 

  76. J. Lewandowski, D. Marolf: Loop constraints: A habitat and their algebra, Int. J. Mod. Phys. D 7, 299 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. A. Laddha, M. Varadarajan: Polymer quantization of the free scalar field and its classical limit, Class. Quantum Gravity 27, 175010 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. A. Laddha, M. Varadarajan: The Hamiltonian constraint in polymer parametrized field theory, Phys. Rev. D 83, 025019 (2011)

    Google Scholar 

  79. A. Laddha, M. Varadarajan: The diffeomorphism constraint operator in loop quantum gravity, Class. Quantum Gravity 28, 195010 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. A. Perez: On the regularization ambiguities in loop quantum gravity, Phys. Rev. D 73, 044007 (2006)

    Google Scholar 

  81. R.M. Wald: The thermodynamics of black holes, Living Rev. Relativ. 4, 6 (2001)

    Google Scholar 

  82. L. Smolin: Linking topological quantum field theory and nonperturbative quantum gravity, J. Math. Phys. 36, 6417 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. K. Krasnov, C. Rovelli: Black holes in full quantum gravity, Class. Quantum Gravity 26, 245009 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. A. Ashtekar, J.C. Baez, K. Krasnov: Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 4, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  85. A. Ashtekar, J. Baez, A. Corichi, K. Krasnov: Quantum geometry and black hole entropy, Phys. Rev. Lett. 80, 904 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. M. Domagala, J. Lewandowski: Black hole entropy from quantum geometry, Class. Quantum Gravity 21, 5233 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. K.A. Meissner: Black hole entropy in loop quantum gravity, Class. Quantum Gravity 21, 5245 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. R.K. Kaul, P. Majumdar: Quantum black hole entropy, Phys. Lett. B 439, 267 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  89. R.K. Kaul, P. Majumdar: Logarithmic correction to the Bekenstein–Hawking entropy, Phys. Rev. Lett. 84, 5255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  90. J. Engle, A. Perez, K. Noui: Black hole entropy and SU(2) Chern–Simons theory, Phys. Rev. Lett. 105, 031302 (2010)

    Google Scholar 

  91. J. Engle, K. Noui, A. Perez, D. Pranzetti: Black hole entropy from an SU(2)-invariant formulation of type I isolated horizons, Phys. Rev. D 82, 044050 (2010)

    Google Scholar 

  92. E. Bianchi: Black hole entropy, loop gravity, and polymer physics, Class. Quantum Gravity 28, 114006 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. A. Ashtekar, J. Engle, C. Van Den Broeck: Quantum horizons and black hole entropy: Inclusion of distortion and rotation, Class. Quantum Gravity 22, L27 (2005)

    Google Scholar 

  94. C. Beetle, J. Engle: Generic isolated horizons in loop quantum gravity, Class. Quantum Gravity 27, 235024 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. A. Ghosh, P. Mitra: Counting black hole microscopic states in loop quantum gravity, Phys. Rev. D 74, 064026 (2006)

    Google Scholar 

  96. G.J. Fernando Barbero, J. Lewandowski, E.J.S. Villasenor: Flux-area operator and black hole entropy, Phys. Rev. D 80, 044016 (2009)

    Google Scholar 

  97. A. Perez, D. Pranzetti: Static isolated horizons: SU(2) invariant phase space, quantization, and black hole entropy, Entropy 13, 744 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. A. Corichi, J. Diaz-Polo, E. Fernandez-Borja: Black hole entropy quantization, Phys. Rev. Lett. 98, 181301 (2007)

    Google Scholar 

  99. A. Corichi, J. Diaz-Polo, E. Fernandez-Borja: Quantum geometry and microscopic black hole entropy, Class. Quantum Gravity 24, 243 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. J. Diaz-Polo, E. Fernandez-Borja: Note on black hole radiation spectrum in Loop Quantum Gravity, Class. Quantum Gravity 25, 105007 (2008)

    Google Scholar 

  101. H. Sahlmann: Entropy calculation for a toy black hole, Class. Quantum Gravity 25, 055004 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. H. Sahlmann: Toward explaining black hole entropy quantization in loop quantum gravity, Phys. Rev. D 76, 104050 (2007)

    Google Scholar 

  103. I. Agullo, E.F. Borja, J. Diaz-Polo: Computing black hole entropy in loop quantum gravity from a conformal field theory perspective, J. Cosmol. Astropart. Phys. 0907, 016 (2009)

    Article  Google Scholar 

  104. I. Agullo, J. Fernando Barbero, E.F. Borja, J. Diaz-Polo, E.J.S. Villasenor: Detailed black hole state counting in loop quantum gravity, Phys. Rev. D 82, 084029 (2010)

    Google Scholar 

  105. G.J. Fernando Barbero, E.J.S. Villasenor: Statistical description of the black hole degeneracy spectrum, Phys. Rev. D 83, 104013 (2011)

    Google Scholar 

  106. I. Agullo, G.J. Fernando Barbero, E.F. Borja, J. Diaz-Polo, E.J.S. Villasenor: The combinatorics of the SU(2) black hole entropy in loop quantum gravity, Phys. Rev. D 80, 084006 (2009)

    Google Scholar 

  107. J.C. Baez, K.V. Krasnov: Quantization of diffeomorphism invariant theories with fermions, J. Math. Phys. 39, 1251 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. T. Thiemann: QSD 5: Quantum gravity as the natural regulator of matter quantum field theories, Class. Quantum Gravity 15, 1281 (1998)

    Google Scholar 

  109. A. Ashtekar, J. Lewandowski, H. Sahlmann: Polymer and Fock representations for a scalar field, Class. Quantum Gravity 20, L11 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  110. T. Thiemann: Gauge field theory coherent states (GCS): 1. General properties, Class. Quantum Gravity 18, 2025 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. T. Thiemann: Complexifier coherent states for quantum general relativity, Class. Quantum Gravity 23, 2063 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. B. Bahr, T. Thiemann: Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups, Class. Quantum Gravity 26, 045012 (2009)

    Google Scholar 

  113. C. Flori, T. Thiemann: Semiclassical analysis of the loop quantum gravity volume operator. I. Flux coherent states, arXiv:0812.1537 [gr-qc]

    Google Scholar 

  114. C. Flori: Semiclassical analysis of the loop quantum gravity volume operator: Area coherent states, arXiv:0904.1303 [gr-qc]

    Google Scholar 

  115. L. Freidel, E.R. Livine: U(N) coherent states for loop quantum gravity, J. Math. Phys. 52, 052502 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. C. Tomlin, M. Varadarajan: Towards an anomaly-free quantum dynamics for a weak coupling limit of Euclidean gravity, Class. Quantum Gravity 87, 044039 (2013)

    Google Scholar 

  117. E.F. Borja, L. Freidel, I. Garay, E.R. Livine: U(N) tools for loop quantum gravity: The return of the spinor, Class. Quantum Gravity 28, 055005 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. E.R. Livine, J. Tambornino: Spinor representation for loop quantum gravity, J. Math. Phys. 53, 012503 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. E.R. Livine, S. Speziale, J. Tambornino: Twistor networks and covariant twisted geometries, Phys. Rev. D 85, 064002 (2012)

    Google Scholar 

  120. E.R. Livine, J. Tambornino: Loop gravity in terms of spinors, J. Phys. Conf. Ser. 360, 012023 (2012)

    MATH  Google Scholar 

  121. B. Dittrich, J. Tambornino: A Perturbative approach to Dirac observables and their space-time algebra, Class. Quantum Gravity 24, 757 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. K. Giesel, S. Hofmann, T. Thiemann, O. Winkler: Manifestly gauge-invariant general relativistic perturbation theory, I. Foundations, Class. Quantum Gravity 27, 055005 (2010)

    Google Scholar 

  123. M. Domagala, K. Giesel, W. Kaminski, J. Lewandowski: Gravity quantized: Loop quantum gravity with a scalar field, Phys. Rev. D 82, 104038 (2010)

    Google Scholar 

  124. K. Giesel, T. Thiemann: Algebraic quantum gravity (AQG). IV. Reduced phase space quantisation of loop quantum gravity, Class. Quantum Gravity 27, 175009 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. V. Husain, T. Pawlowski: Time and a physical Hamiltonian for quantum gravity, Phys. Rev. Lett. 108, 141301 (2012)

    Google Scholar 

  126. H. Sahlmann, T. Thiemann: Towards the QFT on curved space-time limit of QGR. 1. A general scheme, Class. Quantum Gravity 23, 867 (2006)

    Google Scholar 

  127. H. Sahlmann, T. Thiemann: Towards the QFT on curved space-time limit of QGR. 2. A concrete implementation, Class. Quantum Gravity 23, 909 (2006)

    Google Scholar 

  128. A. Ghosh, A. Perez: Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett. 107, 241301 (2011)

    Google Scholar 

  129. A. Ghosh, A. Perez: Erratum, Phys. Rev. Lett. 108, 169901 (2012)

    Google Scholar 

  130. N. Bodendorfer, T. Thiemann, A. Thurn: Towards loop quantum supergravity (LQSG), Phys. Lett. B 711, 205 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Sahlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahlmann, H. (2014). Gravity, Geometry, and the Quantum. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics