Skip to main content

Friedmann–Lemaître–Robertson–Walker Cosmology

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

  • 5072 Accesses

Abstract

Presented is a discussion of homogeneous and isotropic cosmologies described by the Friedmann–Lemaître–Robertson–Walker (GlossaryTerm

FLRW

) metric. The cosmological models provide the framework within which astronomical observations of the Hubble expansion, cosmic microwave background radiation and primordial nucleosynthesis can be described. I present simple cosmological solutions of the Einstein equations in the case of vacuum spacetimes, radiation and dust, and discuss how an accelerated expansion (inflation) can solve some problems of the hot big bang model. In particular I discuss inhomogeneous perturbations about the GlossaryTerm

FLRW

background and how inflationary cosmology provides a model for the origin and evolution of structure in our Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMB:

cosmic microwave background

COBE:

Cosmic Background Explorer

FLRW:

Friedmann–Lemaître–Robertson–Walker

SKA:

Square-Kilometer Array

WMAP:

Wilkinson microwave anisotropy probe

References

  1. S. Weinberg: Cosmology (Oxford Univ. Press, Oxford 2008)

    Google Scholar 

  2. N.J. Cornish, J.R. Weeks: Measuring the shape of the universe, Notices AMS 45, 1463 (1998)

    Google Scholar 

  3. S. Cole, W.J. Percival, J.A. Peacock, P. Norberg, C.M. Baugh, C.S. Frenk, I. Baldry, J. Bland-Hawthorn, T. Bridges, R. Cannon, M. Colless, C. Collins, W. Couch, N.J.G. Cross, G. Dalton, V.R. Eke, R. De Propris, S.P. Driver, G. Efstathiou, R.S. Ellis, K. Glazebrook, C. Jackson, A. Jenkins, O. Lahav, I. Lewis, S. Lumsden, S. Maddox, D. Madgwick, B.A. Peterson, W. Sutherland, K. Taylor: The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications, Mon. Not. Roy. Astron. Soc. 362, 505 (2005)

    Google Scholar 

  4. D.J. Eisenstein, et al.: SDSS-III: Massive spectroscopic surveys of the distant universe, the milky way galaxy, and extra-solar planetary systems, Astron. J. 142, 72 (2011)

    Google Scholar 

  5. W.L. Freedman, B.F. Madore, B.K. Gibson, L. Ferrarese, D.D. Kelson, S. Sakai, J.R. Mould, R.C. Kennicutt, H.C. Ford, J.A. Graham, J.P. Huchra, S.M.G. Hughes, G.D. Illingworth, L.M. Macri, P.B. Stetson: Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophys. J. 553, 47 (2001)

    Google Scholar 

  6. S. Perlmutter, B.P. Schmidt: Measuring cosmology with supernovae, Lect. Notes Phys. 598, 195 (2003)

    Google Scholar 

  7. M. Tegmark, et al.: Cosmological Constraints from the SDSS luminous red galaxies, Phys. Rev. D 74, 123507 (2006)

    Google Scholar 

  8. H.S. Kragh: Conceptions of Cosmos: From Myths to the Accelerating Universe. A History of Cosmology (Oxford Univ. Press, Oxford 2007)

    Google Scholar 

  9. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright: The Cosmic Microwave Background spectrum from the full COBE FIRAS data set, Astrophys. J. 473, 576 (1996)

    Google Scholar 

  10. A.A. Penzias, R.W. Wilson: A Measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142, 419 (1965)

    Google Scholar 

  11. G.F. Smoot, C.L. Bennett, A. Kogut, E.L. Wright, J. Aymon, N.W. Boggess, E.S. Cheng, G. De Amici, S. Gulkis, M.G. Hauser, G. Hinshaw, P.D. Jackson, M. Janssen, E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstein, P. Lubin, J.C. Mather, S.S. Meyer, S.H. Moseley, T. Murdock, L. Rokke, R.F. Silverberg, L. Tenorio, R. Weiss, D.T. Wilkinson: Structure in the COBE differential microwave radiometer first year maps, Astrophys. J. 396, L1 (1992)

    Google Scholar 

  12. E. Komatsu, K.M. Smith, J. Dunkley, C.L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M.R. Nolta, L. Page, D.N. Spergel, M. Halpern, R.S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl. 192, 18 (2011)

    Google Scholar 

  13. G. Steigman: Primordial nucleosynthesis in the precision cosmology era, Annu. Rev. Nucl. Part. Sci. 57, 463 (2007)

    Google Scholar 

  14. D.H. Lyth, A.R. Liddle: The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge Univ. Press, Cambridge 2009)

    Google Scholar 

  15. J.M. Maldacena: The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998)

    Google Scholar 

  16. G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett, J. Dunkley, M.R. Nolta, M. Halpern, R.S. Hill, N. Odegard, L. Page, K.M. Smith, J.L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E. Wollack, E.L. Wright: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208, 19 (2013)

    Google Scholar 

  17. K.A. Malik, D. Wands: Cosmological perturbations, Phys. Rep. 475, 1 (2009)

    Google Scholar 

  18. J.M. Bardeen: Gauge invariant cosmological perturbations, Phys. Rev. D 22, 1882 (1980)

    Google Scholar 

  19. T. Padmanabhan: Structure Formation in the Universe (Cambridge Univ. Press, Cambridge 1993)

    Google Scholar 

  20. C. Kiefer, D. Polarski: Why do cosmological perturbations look classical to us?, Adv. Sci. Lett. 2, 164 (2009)

    Google Scholar 

  21. D. Wands, K.A. Malik, D.H. Lyth, A.R. Liddle: A New approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D 62, 043527 (2000)

    Google Scholar 

  22. L. Amendola, Euclid Theory Working Group: Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel. 16, 6 (2013)

    Google Scholar 

  23. J.R. Pritchard, A. Loeb: 21-cm cosmology, Rept. Prog. Phys. 75, 086901 (2012)

    Google Scholar 

  24. E.J. Copeland, M. Sami, S. Tsujikawa: Dynamics of dark energy, Int. J. Mod. Phys. D 15, 1753 (2006)

    Google Scholar 

  25. M. Bojowald, C. Kiefer, P.V. Moniz: Proc. 12th Marcel Grossmann Meeting Gen. Relativ., Paris, France, July 12-18 (2009)

    Google Scholar 

  26. A.D. Linde: The selfreproducing inflationary universe, Sci. Am. 271, 32 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wands .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wands, D. (2014). Friedmann–Lemaître–Robertson–Walker Cosmology. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics