Skip to main content

Relativity in GNSS

  • Chapter
  • First Online:
Book cover Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

Abstract

Global navigation satellite systems (GlossaryTerm

GNSS

) use accurate, stable atomic clocks in satellites and on the ground to provide world-wide position, velocity, and time to millions of users. Orbiting clocks have gravitational and motional frequency shifts that are so large that, without carefully accounting for numerous relativistic effects, the systems would not work. The basis for navigation using GlossaryTerm

GNSS

, founded on special and general relativity, includes relativistic principles, concepts and effects such as the constancy of the speed of light, relativity of synchronization, coordinate time, proper time, time dilation, the Sagnac effect, the weak equivalence principle, and gravitational frequency shifts. Additional small relativistic effects such as the coordinate slowing of light speed and the effects of tidal potentials from the moon and the sun may need to be accounted for in the future. Examples of new navigation systems that are being developed and deployed are the European GALILEO system and the Chinese BEIDOU system; these will greatly widen the impact of GlossaryTerm

GNSS

. This chapter discusses applications of relativistic concepts in GlossaryTerm

GNSS

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIPM:

International Bureau of Weights and Measures

ECEF:

earth-fixed reference frame

ECI:

earth-centered, locally inertial

GLONASS:

globalnaya navigatsionnaya sputnikovaya sistema

GNSS:

global navigation satellite system

GPS:

global positioning system

GTRF:

Galileo terrestrial reference frame

ICRF:

international celestial reference frame

IERS:

International Earth Rotation Service

ITRF:

International Terrestrial Reference Frame

ITRS:

International Terrestrial Reference System

MEO:

medium earth orbit

SV:

satellite vehicle

TAI:

international atomic time

TT:

terrestrial time

USNO:

U.S. Naval Observatory

UTC:

universal coordinated time

WAAS:

wide area augmentation system

References

  1. J.J. Spilker Jr., B.W. Parkinson: Overview of GPS operation and design. In: Global Positioning System: Theory and Applications, (American Institute of Aeronautics and Astronautics, Washington 1996) p. 33

    Google Scholar 

  2. S. Schlamminger, K.-Y. Choi, T.A. Wagner, J.H. Gundlach, E.G. Adelberger: Test of the equivalence principle using a rotating torsion balance, Phys. Rev. Lett. 100, 041101 (2008)

    Google Scholar 

  3. N. Ashby, B. Bertotti: Relativistic effects in local inertial frames, Phys. Rev. D 34, 2246–2258 (1986)

    Google Scholar 

  4. R.A. Nelson: J., Math Phys. 28, 2379–2383 (1987)

    Google Scholar 

  5. R.A. Nelson: J., Math Phys. 35, 6224–6225 (1994)

    Google Scholar 

  6. S. Malys, J. Slater: Maintenance and enhancement of the world geodetic system 1984, Proc. ION-GPS-94 (1994) pp. 17–24

    Google Scholar 

  7. National Imagery and Mapping Agency Technical Report 8350.2, World Geodetic System 1984, Third Edition, Amendment 1, NIMA Stock No. DMATR83502WGS84, NSN 7643-01-402-0347

    Google Scholar 

  8. Addendum to NIMA TR 8350.2: Implementation of the World Geodetic System 1984 (WGS 84), Reference Frame G1150 (National Geospatial-Intelligence Agency 2001)

    Google Scholar 

  9. N. Ashby, M. Wess: Global Positioning Receivers and Relativity, NIST Technical Note, Vol. 1385 (U.S. Government Printing Office, Washington 1999)

    Google Scholar 

  10. N. Ashby: An Earth-Based Coordinate Clock Network, NBS Technical Note, Vol. 659 (U.S. Dept. of Commerce, U. S. Government Printing Office, Washington 1975), 20402 (S. D. Catalog # C13:46:659)

    Google Scholar 

  11. G. Kaplan: The IAU Resolutions on astronomical reference systems, time scales, and earth rotation models, US Naval Observatory Circular 179 (2005)

    Google Scholar 

  12. K. Lambeck: Geophysical Geodesy, Oxford Science Publications (Clarendon, Oxford 1988) pp. 13–18

    Google Scholar 

  13. G.D. Garland: The Earth’s Shape and Gravity (Pergamon, New York 1965)

    Google Scholar 

  14. N. Ashby, J.J. Spilker Jr.: Introduction to relativistic effects on the Global Positioning System. In: Global Positioning System: Theory and Applications, (American Institute of Aeronautics and Astronautics, Washington 1996) pp. 623–697

    Google Scholar 

  15. N. Ashby, D.W. Allan: Practical implications of relativity for a global coordinate time scale, Radio Sci. 14, 649–669 (1979)

    Google Scholar 

  16. P. Fitzpatrick: The Principles of Celestial Mechanics (Academic, New York 1970)

    Google Scholar 

  17. NAVSTAR GPS Space Segment/Navigation User Interfaces, ICD-GPS-200, Revision C (ARINC Research Corporation, Fountain Valley 1993)

    Google Scholar 

  18. GLONASS Interface Control Document, Edition 5.1 (Moscow 2008) p. 14

    Google Scholar 

  19. GALILEO Open Service Signal in Space Interface Control Document, Issue 1.1 (2010)

    Google Scholar 

  20. Ashby N.: Relativistic Effects in the global positioning system, available online at http://www.relativitylivingreviews.org/Articles/lrr-2003-1 (2007)

  21. J.D. Kraus: Antennas, 2nd edn. (McGraw-Hill, New York 1988), reprinted by Cygnus-Quasar Books, Powell, Ohio

    Google Scholar 

  22. A.K. Tetewsky, F.E. Mullen: Effects of platform rotation on GPS with implications for GPS simulators, Proc. ION-GPS-96 (1996) pp. 1917–1925

    Google Scholar 

  23. C. Salomon, L. Cacciapuoti, N. Dimarcq: atomic clock ensemble in space: Fundamental physics and applications, Int. Jour. Mod. Phys. D 16, 2511 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Ashby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashby, N. (2014). Relativity in GNSS. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics