Skip to main content

The Initial Value Problem in General Relativity

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

Abstract

One of the most effective ways of constructing and studying solutions of Einstein’s gravitational field equations is via the Initial Value Problem. According to this approach, one constructs spacetime solutions by choosing initial data on a spacelike manifold representing the initial state of a model universe, and one then evolves the data into a spacetime solution representing the full history of that model universe.

A set of initial data cannot be chosen freely: it must satisfy a set of partial differential equations known as the Einstein constraint equations. Not only are these constraint equations a necessary condition on initial data sets; they are as well a sufficient condition for an initial data set to admit evolution into a spacetime solution. After showing how to split the full set of Einstein’s field equations into the constraint equations and the evolution equations, we discuss the Well-Posedness Theorem, which shows that indeed all constraint-satisfying data sets can be evolved into spacetime solutions.

Our primary focus is on how to construct and parametrize initial data sets which satisfy the Einstein constraint equations. The Conformal and the Conformal Thin Sandwich Methods both provide ways of turning the constraint equations into a determined nonlinear elliptic system. These equivalent procedures are very effective for initial data sets which involve constant mean curvature or near-constant mean curvature. The challenge is to adapt these methods to more general data sets. An alternative approach for constructing and analyzing solutions of the constraints is via Gluing techniques, which we briefly outline, along with their remarkable applications.

We comment briefly on some of the main questions which arise in studying the long-time behavior of spacetime solutions of Einstein’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADM:

Arnowitt, Deser, Misner

CMC:

constant mean curvature

CTS:

conformal thin sandwich

LCBY:

Lichnerowicz, Choquet-Bruhat, York

NUT:

Newman, Unti, Tamburino

PDE:

partial differential equation

SCC:

strong cosmic censorship

References

  1. R. Arnowitt, S. Deser, C. Misner: The dynamics of gneral relativity. In: Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York 1962) pp. 227–264

    Google Scholar 

  2. J. Isenberg, J. Nester: Canonical gravity. In: General Relativity and Gravitation – The Einstein Centenary, ed. by A. Held (Plenum, New York 1980) pp. 23–93

    Google Scholar 

  3. Y. Choquet-Bruhat: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225 (1952)

    Google Scholar 

  4. Y. Choquet-Bruhat, R. Geroch: Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys. 14, 329–335 (1969)

    Google Scholar 

  5. S. Hawking, G. Ellis: The Large Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge 1973)

    Google Scholar 

  6. V. Moncrief: The space of (generalized) Taub-Nut spacetimes, J. Geom. Phys. 1, 107–130 (1984)

    Google Scholar 

  7. H. Ringstrom: The Cauchy Problem in General Relativity (European Mathematical Society, Zürich 2009)

    Google Scholar 

  8. L. Evans: Partial Differential Equations, 2nd edn. (AMS, Providence 2010)

    Google Scholar 

  9. R. Bartnik, J. Isenberg: The constraint equations. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields, ed. by P.T. Chruściel, H. Friedrich (Birkhäuser, Basel 2004) pp. 1–39

    Google Scholar 

  10. F. Pretorius: Numerical relativity using a generalized harmonic decomposition, Class. Quantum Gravity 22, 425–452 (2005)

    Google Scholar 

  11. J. Isenberg, J. Nester: The effect of gravitational interaction on classical fields: A Hamilton Dirac Analysis, Ann. Phys. 107, 56–81 (1977)

    Google Scholar 

  12. D. Bao, Y. Choquet-Bruhat, J. Isenberg, P. Yasskin: The well-posedness of (N = 1) classical supergravity, J. Math. Phys. 26, 329–333 (1985)

    Google Scholar 

  13. A. Fischer, J. Marsden: The Einstein evolution equations as a first-ordeer quasi-linear symmetric hyperbolic system, I, Commun. Math. Phys. 28, 1–38 (1972)

    Google Scholar 

  14. T. Hughes, T. Kato, J. Marsden: Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Ration. Mech. Anal. 63, 273–394 (1977)

    Google Scholar 

  15. S. Klainerman, I. Rodnianski: Rough solutions to the Einstein vacuum equations, Ann. Math. 61, 1143–1193 (2005)

    Google Scholar 

  16. S. Klainerman, I. Rodnianski, J. Szeftel: Overview of the proof of the bounded L 2 curvature conjecture (2012), arXiv:1204.1772v2

    Google Scholar 

  17. Y. Choquet-Bruhat, J. York: The Cauchy Problem. In: General Relativity and Gravitation – The Einstein Centenary, ed. by J. York (Plenum, New York 1980) pp. 99–160

    Google Scholar 

  18. A. Lichnerowicz: L’integration des equations de la gravitation relativiste et la probleme des n corps, Journ. de Math. XXIII, 37–63 (1944)

    Google Scholar 

  19. R. Schoen: Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom. 20, 479–495 (1984)

    Google Scholar 

  20. J. Isenberg: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class. Quantum Gravity 12, 2249–2274 (1995)

    Google Scholar 

  21. J. Barbour, N. O’Murchadha: Conformal superspace: the configuration space of general relativity (2010), arXiv:1009.3559[gr-qc]

    Google Scholar 

  22. J. Isenberg, D. Maxwell, D. Pollack: A gluing construction for non-vacuum solutions of the Einsteinconstraint equations, Adv. Theor. Math. Phys. 9, 129–172 (2005)

    Google Scholar 

  23. Y. Choquet-Bruhat, J. Isenberg, D. Pollack: The constraint equations for the Einstein-scalar field system oncompact manifolds, Class. Quantum Gravity 24, 809–828 (2007)

    Google Scholar 

  24. E. Hebey, F. Pacard, D. Pollack: A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Commun. Math. Phys. 278, 117–132 (2008)

    Google Scholar 

  25. Y. Choquet-Bruhat, D. Christodoulou: Elliptic systems in H s , δ spaces on manifolds which are Euclidean at infinity, Acta Math. 146, 124–150 (1981)

    Google Scholar 

  26. Y. Choquet-Bruhat, J. Isenberg, J.W. York: Einstein constraints on asymptotically Euclidean manifolds, Phys. Rev. D 61, 1–20 (2000)

    Google Scholar 

  27. M. Cantor: The existence of non-trivial asymptotically flat initial data for vacuum spacetimes, Commun. Math. Phys. 57, 83 (1977)

    Google Scholar 

  28. D. Brill, M. Cantor: The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, Compos. Math. 43, 317 (1981)

    Google Scholar 

  29. D. Maxwell: Solutions of the Einstein constraint equations with apparent horizon boundaries, Commun. Math. Phys. 253, 561–583 (2004)

    Google Scholar 

  30. H. Friedrich: Yamabe numbers and the Brill–Cantor criterion, Ann. Henri Poincaré 12, 1019–1025 (2011)

    Google Scholar 

  31. L. Andersson, P. Chruściel: Solutions of the constraint equations in general relativity satisfying “hyperboloidal boundary conditions”, Diss. Math. (Rozprawy Mat.) 355, 1–100 (1996)

    Google Scholar 

  32. P. Chruściel, R. Mazzeo: Initial data sets with ends of cylindrical type I: The Lichnerowicz equation (2012), arXiv:1201.4937

    Google Scholar 

  33. P. Chruściel, R. Mazzeo, S. Pocchiola: Initial data sets with ends of cylindrical type II: The vector constraint equation arXiv:1201.5138 (2012)

    Google Scholar 

  34. J. Isenberg, V. Moncrief: A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class. Quantum Gravity 1, 1819–1847 (1996)

    Google Scholar 

  35. P. Allen, A. Clausen, J. Isenberg: Near-constant mean curvature solutions of the Einstein constraint equations with nonnegative Yamabe metrics, Class. Quantum Gravity 25, 075009 (2008)

    Google Scholar 

  36. J. Isenberg, N.O. Murchadha: Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations, Class. Quantum Gravity 21, S233 (2004)

    Google Scholar 

  37. M. Dahl, R. Gicquaud, E. Humbert: A limit equation associated to the solvabilityof the vacuum Einstein constraint equations using the conformal method, Duke Math J. 161, 2669–2697 (2012)

    Google Scholar 

  38. J. Isenberg, J. Park: Asymptotically hyperbolic non constant mean curvature solutions of the Einstein constraint equations, Class. Quantum Gravity 14, A189–A202 (1997)

    Google Scholar 

  39. M. Holst, G. Nagy, G. Tsogtgerel: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Commun. Math. Phys. 288, 547–613 (2009)

    Google Scholar 

  40. D. Maxwell: Rough solutions of the Einstein constraints on compact manifolds, J. Hyperbolic Differ. Equ. 2, 521–546 (2005)

    Google Scholar 

  41. R. Gicquaud, A. Sakovich: A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold (2012), arXiv:1012.2246

    Google Scholar 

  42. D. Maxwell: A model problem or conformal parameterizations of the Einstein constraint equations, Commun. Math. Phys. 302, 697–736 (2011)

    Google Scholar 

  43. J.W. York: Conformal “thin-sandwich” data for the initial-value problem of general relativity, Phys. Rev. Lett. 82, 1350–1353 (1999)

    Google Scholar 

  44. J. Corvino: Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys. 214, 137–189 (2000)

    Google Scholar 

  45. J. Corvino, R. Schoen: On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom. 73, 185–358 (2006)

    Google Scholar 

  46. P. Chruściel, E. Delay: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mem. Soc. Math. France 93, 1–103 (2003)

    Google Scholar 

  47. J. Isenberg, R. Mazzeo, D. Pollack: Gluing and wormholes for the Einstein constraint equations, Commun. Math. Phys. 231, 529–568 (2001)

    Google Scholar 

  48. P. Chruściel, J. Isenberg, D. Pollack: Initial data engineering, Commun. Math. Phys. 257, 29–42 (2005)

    Google Scholar 

  49. R. Beig, P. Chruściel, R. Schoen: KIDS are non-generic, Ann. Henri Poincaré 6, 155–194 (2005)

    Google Scholar 

  50. P. Chruściel, E. Delay: Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quantum Gravity 19, L71–L79 (2002)

    Google Scholar 

  51. P. Chruściel, J. Corvino, J. Isenberg: Construction of n-body initial data sets in general relativity, Commun. Math. Phys. 304, 637–647 (2011)

    Google Scholar 

  52. R. Bartnik: Remarks on cosmological spacetimes and constant mean curvature surfaces, Commun. Math. Phys. 117, 615–624 (1988)

    Google Scholar 

  53. L. Andersson, T. Barbot, R. Benedetti, F. Bonsante, W. Goldman, F. Labourie,K. Scannell, J. Schlenker: Notes on a paper of Mess (2007), arXiv:0706.0640

    Google Scholar 

  54. R. Penrose: The question of cosmic censorship, J. Astrophys. Astr. 20, 233–248 (1999)

    Google Scholar 

  55. H. Ringstrom: Curvature blow up on a dense subset of the singularity in T 3 -Gowdy, J. Hyperbolic Differ. Equ. 2, 547–564 (2005)

    Google Scholar 

  56. R. Gowdy: Vacuum spacetimes with two-parameter spacelike isometry groups and compaact invarian hypersurfaces: topologies and boundary conditions, Ann. Phys. 83, 203–241 (1974)

    Google Scholar 

  57. P. Chruściel: On uniqueness in the large of solutions of Einstein’s equation (strong cosmic censorship) (Centre for Mathematics and its Applications, Australian National University 1991)

    Google Scholar 

  58. J. Isenberg, V. Moncrief: Asymptotic behavior in polarized and half-polarized U ( 1 ) symmetric vacuum spacetimes, Class. Quantum Gravity 19, 5361–5386 (2002)

    Google Scholar 

  59. D. Christodoulou, S. Klainerman: The global non linear stability of the Minkowski space (University Press, Princeton 1993)

    Google Scholar 

  60. L. Bieri, N. Zipser: Extensions of the Stability Theorem of the Minkowski Space In General Relativity, AMS Studies in Advanced Mathematics (2009)

    Google Scholar 

  61. M. Dafermos, I. Rodnianski: The black hole stability problem for linear scalar perturbations (2010), arXiv:1201.1797

    Google Scholar 

  62. H. Friedrich: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys. 107, 587–609 (1986)

    Google Scholar 

  63. L. Andersson, V. Moncrief: Future complete vacuum spacetimes. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields (Birkhäuser, Basel 2004)

    Google Scholar 

  64. H. Ringstrom: Future stability of the Einstein-non-linear scalar field system, Invent. Math. 173, 123–208 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Isenberg Professor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isenberg, J. (2014). The Initial Value Problem in General Relativity. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics