Skip to main content

The Nature and Origin of Time-Asymmetric Spacetime Structures

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

Abstract

Time-asymmetric spacetime structures, in particular those representing black holes and the expansion of the universe, are intimately related to other arrows of time , such as the second law and the retardation of radiation. The nature of the quantum arrow, often attributed to a collapse of the wave function , is essential, in particular, for understanding the much discussed black hole information loss paradox . This paradox assumes a new form and can possibly be avoided in a consistent causal treatment that may be able to avoid horizons and singularities. The master arrow that would combine all arrows of time does not have to be identified with a direction of the formal time parameter that serves to formulate the dynamics as a succession of global states (a trajectory in configuration or Hilbert space). It may even change direction with respect to a fundamental physical clock such as the cosmic expansion parameter if this was formally extended either into a future contraction era or to negative pre-big-bang values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADM:

Arnowitt, Deser, Misner

CPT:

charge, parity, time

WKB:

Wentzel–Kramers–Brillouin

References

  1. H.D. Zeh: The Physical Basis of the Direction of Time, 5th edn. (Springer, Berlin 2007)

    Google Scholar 

  2. J.R. Oppenheimer, H. Snyder: On continued gravitational contration, Phys. Rev. 56, 455 (1939)

    Google Scholar 

  3. F.J. Dyson: Time without end: Physics and biology in an open universe, Rev. Mod. Phys. 51, 447 (1979)

    Google Scholar 

  4. J.D. Bekenstein: Black holes and entropy, Phys. Rev. D7, 2333 (1973)

    Google Scholar 

  5. S.W. Hawking: Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975)

    Google Scholar 

  6. F.C. Adams, G. Laughlin: Aging universe: The long-term fate and evolution of astrophysical objects, Rev. Mod. Phys. 69, 337 (1997)

    Google Scholar 

  7. D.N. Page: Is black hole evaporation predictable?, Phys. Lett. B95, 244 (1980)

    Google Scholar 

  8. Y.B. Zel’dovich: Gravity, charge, cosmology and coherence, Usp. Fiz. Nauk 123, 487 (1977), Sov. Phys. Usp. 20, 945 (1977)

    Google Scholar 

  9. S.W. Hawking: Breakdown of predictability in gravitational collapse, Phys. Rev. D14, 2460 (1976)

    Google Scholar 

  10. D.N. Page: Black hole information, Proc. 5th Can. Conf. Gen. Rel. Relat. Astrophys., ed. by R.B. Mann, R.G. McLenaghan (World Scientific, Singapore 1994), and reference therein

    Google Scholar 

  11. D. Gottesmann, J. Preskill: Comment on “The black hole final state”, J. High Energy Phys. 0403, 026 (2004)

    Google Scholar 

  12. S.W. Hawking: Information loss in black holes, Phys. Rev. D72, 084013 (2005)

    Google Scholar 

  13. S.D.H. Hsu, D. Reeb: Black holes, information and decoherence, Phys. Rev. D79, 124037 (2009)

    Google Scholar 

  14. C. Barceló, S. Liberati, S. Sonego, M. Visser: Analogue gravity, arXiv 1011.5911v1 (2010)

    Google Scholar 

  15. A. Almheiri, D. Marolf, J. Polchinski, J. Sully: Black holes: Complementarity of firewalls, arXiv:1207.3123v2 (2012)

    Google Scholar 

  16. C. Kiefer: Hawking radiation from decoherence, Class. Quantum Gravity 18, L151 (2001)

    Google Scholar 

  17. C. Kiefer: Decoherence and entropy in complex systems. In: Decoherence and Entropy in Complex Systems, ed. by H.T. Elze (Springer, Berlin 2004)

    Google Scholar 

  18. H.D. Zeh: Where has all the information gone?, Phys. Lett. A347, 1 (2005)

    Google Scholar 

  19. R. Bousso: Firewalls from double purity, arxiv:1308.2665 (2013)

    Google Scholar 

  20. D. Page: Time dependence of Hawking radiation entropy, arxiv:1301.4995 (2013)

    Google Scholar 

  21. R. Penrose: Time-asymmetry and quantum gravity. In: Quantum Gravity, Vol. 2, ed. by C.J. Isham, R. Penrose, D.W. Sciama (Clarendon, London 1981) pp. 245–272

    Google Scholar 

  22. C. Kiefer: Can the arrow of time be understood from quantum gravity?, arXiv 0910.5836 (2009)

    Google Scholar 

  23. S.W. Hawking: Black holes and thermodynamics, Phys. Rev. D13, 191 (1976)

    Google Scholar 

  24. L. Boltzmann: Über irreversible Strahlungsvorgänge, Berl. Ber., pp. 1016–1018 (1897)

    Google Scholar 

  25. A. Einstein, W. Ritz: Zum gegenwärtigen Stand des Stahlungsproblems, Phys. Z. 10, 323 (1911)

    Google Scholar 

  26. T. Gold: The arrow of time, Am. J. Phys. 30, 403 (1962)

    Google Scholar 

  27. H.D. Zeh: Remarks on the compatiblity of opposite arrows of time, Entropy 8, 44 (2006)

    Google Scholar 

  28. C. Kiefer, H.D. Zeh: Arrow of time in a recollapsing quantum universe, Phys. Rev. D51, 4145 (1995)

    Google Scholar 

  29. M. Bojowald: Initial conditions for a universe, Gen. Relativ. Gravit. 35, 1877 (2003)

    Google Scholar 

  30. H.D. Conradi, H.D. Zeh: Quantum cosmology as an initial value problem, Phys. Lett. A151, 321 (1991)

    Google Scholar 

  31. A. Ashtekar, M. Campiglia, A. Henderson: Path integrals and WKB approximation in loop quantum cosmology, report arXiv 1011.1024v1 (2010)

    Google Scholar 

  32. R. Arnowitt, S. Deser, C.W. Misner: The dynamics of general relativity. In: Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York 1962)

    Google Scholar 

  33. J. Barbour: Leibnizian time, Machian dynamics and quantum gravity. In: Quantum Concepts in Space and Time, ed. by R. Penrose, C.J. Isham (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  34. J. Barbour: The timelessnes of quantum gravity, Class. Quantum Gravity 11, 2853 (1994)

    Google Scholar 

  35. J. Barbour: The End of Time (Weidenfeld and Nicolson, London 1999)

    Google Scholar 

  36. C. Kiefer: Quantum Gravity (Cambridge Univ. Press, Cambridge 2007)

    Google Scholar 

  37. K. Kuchar: Time and interpretations of quantum gravity, Proc. 4th Can. Conf. Gen. Rel. Relat. Astrophys., ed. by G. Kunstatter, D. Vincent, J. Williams (World Scientific, Singapore 1992)

    Google Scholar 

  38. C.J. Isham: Canonical quantum gravity and the problem of time. In: Integrable Systems, Quantum Groups and Quantum Field Theory, ed. by L.A. Ibort, M.A. Rodriguez (Kluwer, Doordrecht 1993)

    Google Scholar 

  39. H.D. Zeh: Die Physik der Zeitrichtung, Springer Lecture Notes (Springer, Berlin 1984), Chap. 6

    Google Scholar 

  40. H.D. Zeh: Emergence of classical time from a universe wave function, Phys. Lett. A116, 9 (1986)

    Google Scholar 

  41. H.D. Zeh: Time in quantum gravity, Phys. Lett. A126, 311 (1988)

    Google Scholar 

  42. D.N. Page, W.K. Wootters: Evolution without evolution: Dynamics described by stationary observables, Phys. Rev. D27, 2885 (1983)

    Google Scholar 

  43. D. Giulini, C. Kiefer: Wheeler–DeWitt metric and the attractivity of gravity, Phys. Lett. A193, 21 (1994)

    Google Scholar 

  44. J.J. Halliwell, S.W. Hawking: Origin of structure in the universe, Phys. Rev. D31, 1777 (1985)

    Google Scholar 

  45. C. Kiefer: Continuous measurement of minisuperspace variables by higher multipoles, Class. Quantum Gravity 4, 1369 (1987)

    Google Scholar 

  46. C. Kiefer: Wave packets in minisuperspace, Phys. Rev. D38, 1761 (1988)

    Google Scholar 

  47. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, I.V. Mishakov: Decoherence in quantum cosmology at the onset of inflation, Nucl. Phys. B551, 374 (1999)

    Google Scholar 

  48. V.G. Lapchinsky, V.A. Rubakov: Canonical quantization of gravity and quantum field theory in curved space-time, Acta Phys. Pol. 10, 1041 (1979)

    Google Scholar 

  49. T. Banks: TCP, quantum gravity, the cosmological constant and all that, Nucl. Phys. B249, 332 (1985)

    Google Scholar 

  50. R. Brout, G. Venturi: Time in semiclassical gravity, Phys. Rev. D39, 2436 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dieter Zeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeh, H.D. (2014). The Nature and Origin of Time-Asymmetric Spacetime Structures. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics