Automated Method for Software Integration Testing Based on UML Behavioral Models

  • Dominykas Barisas
  • Eduardas Bareiša
  • Šarūnas Packevičius
Part of the Communications in Computer and Information Science book series (CCIS, volume 403)


Nowadays, testing is often considered more important than the code itself. Therefore, in order to test large and complex systems test automation methods are needed, which help evaluating whether the software is working properly. The main goal of the research is to improve effectiveness of integration testing by creating an automated method based on UML behavioral models. Test input data generation using symbolic execution was applied and it gave full structural coverage, which increased the quality of integration testing. Testing method allowed automating the testing process and increased the effectiveness of tests in comparison with other methods. Experiments showed that 96% of all mutations were successfully detected, and automated test data generation based on symbolic execution increased the detection of mutants by 6-19% in comparison to other model-based testing methods.


software testing integration testing model-based testing symbolic execution constraint solver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for static checking and test generation. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 383–395. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ali, S., Briand, L.C., Rehman, M.J.-U., Asghar, H., Iqbal, M.Z.Z., Nadeem, A.: A state-based approach to integration testing based on UML models. Inf. Softw. Technol. 49(11-12), 1087–1106 (2007)CrossRefGoogle Scholar
  3. 3.
    Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press (2008)Google Scholar
  4. 4.
    Barisas, D.: Automated method for software integration testing based on UML behavioral models. Dissertation, Kaunas University of Technology, p. 110 (2012)Google Scholar
  5. 5.
    Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.: A subset of precise UML for model-based testing. In: Proceedings of the 3rd International Workshop on Advances in Model-Based Testing, pp. 95–104. ACM, London (2007)CrossRefGoogle Scholar
  6. 6.
    Briand, L.C., Labiche, Y.: A UML-Based Approach to System Testing. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 194–208. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Briand, L.C., Penta, M.D., Labiche, Y.: Assessing and Improving State-Based Class Testing: A Series of Experiments. IEEE Trans. Softw. Eng. 30(11), 770–793 (2004)CrossRefGoogle Scholar
  8. 8.
    Chevalley, P., Th, P.: \#233, and venod-Fosse, Automated Generation of Statistical Test Cases from UML State Diagrams. In: Proceedings of the 25th International Computer Software and Applications Conference on Invigorating Software Development, pp. 205–214. IEEE Computer Society (2001)Google Scholar
  9. 9.
    Craig, R.D., Jaskiel, S.P.: Systematic software testing. Artech House (2002)Google Scholar
  10. 10.
    Fraikin, F., Leonhardt, T.: SeDiTeC-testing based on sequence diagrams. In: Proceedings of the 17th IEEE International Conference on Automated Software Engineering, ASE 2002, pp. 261–266 (2002)Google Scholar
  11. 11.
    Gallagher, L., Offutt, J.: Automatically testing interacting software components. In: Proceedings of the 2006 International Workshop on Automation of Software Test, pp. 57–63. ACM, Shanghai (2006)CrossRefGoogle Scholar
  12. 12.
    Garousi, V., Briand, L.C., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence Diagrams. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 160–174. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hartmann, J., Imoberdorf, C., Meisinger, M.: UML-Based integration testing. In: Proceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 60–70. ACM, Portland (2000)Google Scholar
  14. 14.
    Kansomkeat, S., Rivepiboon, W.: Automated-generating test case using UML statechart diagrams. In: Proceedings of the 2003 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on Enablement Through Technology, pp. 296–300. South African Institute for Computer Scientists and Information Technologists (2003)Google Scholar
  15. 15.
    Kim, S.-K., Wildman, L., Duke, R.: A UML Approach to the Generation of Test Sequences for Java-Based Concurrent Systems. In: Proceedings of the 2005 Australian Conference on Software Engineering, pp. 100–109. IEEE Computer Society (2005)Google Scholar
  16. 16.
    Kim, Y.G., Hong, H.S., Bae, D.H., Cha, S.D.: Test cases generation from UML state diagrams. IEE Proceedings - Software 146(4), 187–192 (1999)CrossRefGoogle Scholar
  17. 17.
    Li, B.-L., Li, Z.-S., Qing, L., Chen, Y.-H.: Test Case Automate Generation from UML Sequence Diagram and OCL Expression. In: Proceedings of the 2007 International Conference on Computational Intelligence and Security, pp. 1048–1052. IEEE Computer Society (2007)Google Scholar
  18. 18.
    Ma, Y.-S., Kwon, Y.-R., Offutt, J.: Inter-Class Mutation Operators for Java. In: Proceedings of the 13th International Symposium on Software Reliability Engineering, p. 352. IEEE Computer Society (2002)Google Scholar
  19. 19.
    McConnell, S.: Code complete, pp. 463–477. Microsoft Press (2004)Google Scholar
  20. 20.
    McMinn, P.: Search-based software test data generation: a survey: Research Articles. Softw. Test. Verif. Reliab. 14(2), 105–156 (2004)CrossRefGoogle Scholar
  21. 21.
    Offutt, J., Ma, Y.-S., Kwon, Y.-R.: The class-level mutants of MuJava. In: Proceedings of the 2006 International Workshop on Automation of Software Test, pp. 78–84. ACM, Shanghai (2006)CrossRefGoogle Scholar
  22. 22.
    Patton, R.: Software Testing. Sams (2000)Google Scholar
  23. 23.
    Samuel, P., Joseph, A.T.: Test Sequence Generation from UML Sequence Diagrams. In: Proceedings of the 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 879–887. IEEE Computer Society (2008)Google Scholar
  24. 24.
    Sokenou, D.: Generating Test Sequences from UML Sequence Diagrams and State Diagrams. GI Jahrestagung, 236–240 (2006)Google Scholar
  25. 25.
    Weiqun, Z.: Model-Based Software Component Testing: A UML-Based Approach, 891–899 (2007)Google Scholar
  26. 26.
    Wu, Y., Chen, M.-H., Offutt, J.: UML-Based Integration Testing for Component-Based Software. In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580, pp. 251–260. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dominykas Barisas
    • 1
  • Eduardas Bareiša
    • 1
  • Šarūnas Packevičius
    • 1
  1. 1.Software Engineering DepartmentKaunas University of TechnologyKaunasLithuania

Personalised recommendations