Advertisement

Estimation of the Environmental Impact on the Accuracy of Signal Recognition

  • Gintarė Čeidaitė
  • Laimutis Telksnys
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 403)

Abstract

The problem of the random signals recognition system’s adaptation to the variable environmental conditions is discussed. The constructive method that demonstrates possibilities to create recognition systems able to adapt to changing working conditions. The efficiency of the method is demonstrated by experiment analyzing the recognition of random signals in environments with different characteristics. The results demonstrate that the suggested method also can be useful in the development of the speech recognition devices operating in various environments.

Keywords

random signals’ recognition adaptive recognition modelling recognitions accurate estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theodoridis, S., Pikrakis, A., Koutroumbas, K., Cavouras, D.: Introduction to Pattern Recognition: A Matlab Approach. Elsevier (2010)Google Scholar
  2. 2.
    Čeidaitė, G., Telksnys, L.: Analysis of factors influencing accuracy of speech recognition. Electronics and Electrical Engineering 9(105), 69–72 (2010)Google Scholar
  3. 3.
    Šalna, B., Kamarauskas, J.: Evaluation of Effectiveness of Different Methods in Speaker Recognition. Electronics and Electrical Engineering 2(98), 67–70 (2010)Google Scholar
  4. 4.
    Rudžionis, A., Ratkevičius, K., Rudžionis, V.: Speech in Call and Web centers Electronics and Electrical Engineering 3(59), 58–63 (2005)Google Scholar
  5. 5.
    Tamuliavičius G.: Pavienių žodžių atpažinimo sistemų kūrimas Ph D. Thesis (2008)Google Scholar
  6. 6.
    Moler, C.: Numerical Computing with Matlab, pp. 257–265 (2004)Google Scholar
  7. 7.
    Lawrence, R.R., Ronald, W.: Schaf: Introduction to Digital Speech Processing Foundations and Trends® in Signal Processing 1(1-2), 1–194 (2007)Google Scholar
  8. 8.
    Müller, M.: Information Retrieval for Music and Motion, pp. 69–70Google Scholar
  9. 9.
    Bachu, R.G., Kopparthi, S., Adapa, B., Barkana, B.D.: Separation of Voiced and Unvoiced using Zero crossing rate and Energy of the Speech Signal. ASEE (2008)Google Scholar
  10. 10.
    Prasad Das, B., Parekh, R.: Recognition of Isolated Words using Features based on LPC, MFCC, ZCR and STE, with Neural Network Classifiers. International Journal of Modern Engineering Research (IJMER) 2(3), 854–858 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gintarė Čeidaitė
    • 1
  • Laimutis Telksnys
    • 1
    • 2
  1. 1.Department of System AnalysisVytautas Magnus UniversityKaunasLithuania
  2. 2.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations