Recognition of Voice Commands Using Hybrid Approach

  • Vytautas Rudžionis
  • Kastytis Ratkevičius
  • Algimantas Rudžionis
  • Gailius Raškinis
  • Rytis Maskeliunas
Part of the Communications in Computer and Information Science book series (CCIS, volume 403)


Computerized systems with voice user interfaces could save time and ease the work of healthcare practitioners. To achieve this goal voice user interface should be reliable (to recognize the commands with high enough accuracy) and properly designed (to be convenient for the user). The paper deals with hybrid approach implementation issues for the voice commands recognition. By the hybrid approach we assume the combination of several different recognition methods to achieve higher recognition accuracy. The experimental results show that most voice commands are recognized good enough but there is some set of voice commands which recognition is more complicated. In this paper the novel method is proposed for the combination of several recognition methods based on the Ripper algorithm. Experimental evaluation showed that this method allows achieve higher recognition accuracy than application of blind combination rule.


Multimodal interface voice user interface speech engine adaptation voice commands hybrid approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suendermann, D., Pieraccini, R.: SLU in Commercial and Research Spoken Dialogue Systems. In: Tur, G., De Mori, R. (eds.) Spoken Language Understanding, pp. 171–194. John Wiley & Sons, Ltd. (2011)Google Scholar
  2. 2.
    Rudzionis, V., Ratkevicius, K., Rudzionis, A., Maskeliunas, R., Raskinis, G.: Voice Controlled Interface for the Medical-Pharmaceutical Information System. In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2012. CCIS, vol. 319, pp. 288–296. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Saon, G., Chien, J.-T.: Large-Vocabulary Continuous Speech Recognition Systems: A Look at Some Recent Advances. IEEE Signal Processing Magazine 29(6), 18–33 (2012)CrossRefGoogle Scholar
  4. 4.
    Tur, G., Stolcke, A.: The CALO Meeting Speech Recognition and Understanding System. In: Proc. IEEE Spoken Language Technology Workshop, pp. 69–72 (2008)Google Scholar
  5. 5.
    Chelba, C., Xu, P., Pereira, F., Richardson, T.: Distributed Acoustic Modeling with Back-off N-grams. In: Proc. of ICASSP 2012, pp. 4129–4132. IEEE (2012)Google Scholar
  6. 6.
    Kumar, N., Andreou, A.: Heteroscedastic Discriminant Analysis and Reduced Rank HMMs for Improved Speech Recognition. Speech Communication 25(4), 283–297 (1998)CrossRefGoogle Scholar
  7. 7.
    Ganapathiraju, A., Hamaker, J., Picone, J.: Hybrid SVM/HMM architectures for speech recognition. In: Proc. of Interspeech, vol. 11, pp. 504–507 (2000)Google Scholar
  8. 8.
    Rudzionis, V., Raskinis, G., Maskeliunas, R., Rudzionis, A., Ratkevicius, K.: Comparative Analysis of Adapted Foreign Language and Native Lithuanian Speech Recognizers for Voice User Interface. Elektronika ir Elektrotechnika 19(7) (in press, 2013)Google Scholar
  9. 9.
    Maskeliūnas, R., Rudžionis, A., Ratkevičius, K., Rudžionis, V.: Investigation of foreign languages models for Lithuanian speech recognition. Elektronika ir Elektrotechnika 3, 15–20 (2009)Google Scholar
  10. 10.
    Vaičiūnas, A.: Statistical Language Models of Lithuanian and their Application to Very Large Vocabulary Continuous Speech Recognition. Summary of PhD thesis, Vytautas Magnus University, Kaunas (2006)Google Scholar
  11. 11.
    Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book, Cambridge (2000)Google Scholar
  12. 12.
    Cohen, W.W.: Fast Effective Rule Induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vytautas Rudžionis
    • 1
  • Kastytis Ratkevičius
    • 2
  • Algimantas Rudžionis
    • 2
  • Gailius Raškinis
    • 3
  • Rytis Maskeliunas
    • 2
  1. 1.Vilnius University Kaunas FacultyKaunasLithuania
  2. 2.Faculty of InformaticsKaunas University of TechnologyKaunasLithuania
  3. 3.Vytautas Magnus University Informatics FacultyKaunasLithuania

Personalised recommendations