Semi-supervised Learning of Action Ontology from Domain-Specific Corpora

  • Irena Markievicz
  • Daiva Vitkute-Adzgauskiene
  • Minija Tamosiunaite
Part of the Communications in Computer and Information Science book series (CCIS, volume 403)


The paper presents research results, showing how unsupervised and supervised ontology learning methods can be combined in an action ontology building approach. A framework for action ontology building from domainspecific corpus texts is suggested, using different natural language processing techniques, such as collocation extraction, frequency lists, word space model, etc. The suggested framework employs additional knowledge sources of WordNet and VerbNet with structured linguistic and semantic information. Results from experiments with crawled chemical laboratory corpus texts are given.


action ontology semi-supervised ontology learning natural language processing corpus linguistics domain-specific corpus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications, pp. 10–17. Springer, Karlsruhe (2006)Google Scholar
  2. 2.
    Kemke, C.: An Action Representation Formalism for Natural Language Interfaces to Agent Systems. International Journal of Convergence Information Technology 2(2), 30–36 (2007)Google Scholar
  3. 3.
    Morgenstern, L., Riecken, D.: SNAP: An Action-Based Ontology for E-commerce Reasoning. In: Formal Ontologies Meet Industry, Proceedings of the 1st Workshop, FOMI 2005 (2005)Google Scholar
  4. 4.
    Wales, R.C., Shalin, V.L., Bass, D.S.: Requesting Distant Robotic Action: An Ontology of Work, Naming and Action Identification for Planning on the Mars Exploration Rover Mission. Journal of the Association for Information Systems 8(2), art. 6 (2007)Google Scholar
  5. 5.
    Chatterjee, R., Matsuno, F.: Robot description ontology and disaster scene description ontology: analysis of necessity and scope in rescue infrastructure context. Advanced Robotics 19(8), 839–859 (2005); VSP and Robotics Society of JapanGoogle Scholar
  6. 6.
    Jung, Y., Ryu, J., Kim, K., Myaeng, S.: Automatic construction of large-scale situation ontology by mining how-to instructions from the web. Web Semantics: Science, Services and Agents on the World Wide Web 8(2), 110–124 (2010)CrossRefGoogle Scholar
  7. 7.
    Bedini, I., Nguyen, B.: Automatic Ontology Generation: State of the Art. PRiSM Laboratory Technical Report. University of Versailles (2007)Google Scholar
  8. 8.
    Grigonyte, G.: Building and Evaluating Domain Ontologies: NLP Contributions. Logos Verlag Berlin GmbH (2010)Google Scholar
  9. 9.
    Moldovan, D.I., Girju, R.: Domain-specific knowledge acquisition and classification using WordNet. In: Proceedings of the Thirteenth International Florida Artificial Intelligence. Research Society Conference, pp. 224–228. AAAI Press (2000)Google Scholar
  10. 10.
    Nobécourt, J.: A method to build formal ontologies from texts. In: Workshop on Ontologies and Text. Juan-Les-Pins, France (2000)Google Scholar
  11. 11.
    Hu, H., Lium, D.Y.: Learning OWL ontologies from free texts. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1233–1237. IEEE (2004)Google Scholar
  12. 12.
    Mariano, F., Gomez-Perez, A., Juristo, N.: Methontology: From Ontological Art Towards Ontological Engineering. In: Proceedings of AAAI-97 Spring Symposium. Series on Ontological Engineering, pp. 33–40. AAAI Press, Stanford (2004)Google Scholar
  13. 13.
    Shutze, H., Pedersen, J.: A co-occurrence-based thesaurus and two applications to information retrieval. Information Processing and Management 33(3), 307–318 (1997)CrossRefGoogle Scholar
  14. 14.
    Daudaravicius, V., Marcinkeviciene, R.: Gravity counts for the boundaries of collocations. International Journal of Corpus Linguistics 9(2), 321–348 (2004)CrossRefGoogle Scholar
  15. 15.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: Extending VerbNet with Novel Verb Classes. In: Fifth International Conference on Language Resources and Evaluation (LREC 2006), Genoa (2006)Google Scholar
  16. 16.
    Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for building ontologies. Where is their meeting point? Data & Knowledge Engineering 46(1), 41–64 (2003)CrossRefGoogle Scholar
  17. 17.
    Baader, F.: Appendix: description logic terminology. The Description logic handbook: Theory, implementation, and applications, pp. 485–495. Cambridge University Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Irena Markievicz
    • 1
  • Daiva Vitkute-Adzgauskiene
    • 1
  • Minija Tamosiunaite
    • 2
  1. 1.Faculty of InformaticsVytautas Magnus UniversityKaunasLithuania
  2. 2.Bernstein Center for Computational NeuroscienceUniversity of GottingenLithuania

Personalised recommendations