Skip to main content

Scene Perception and Recognition in Industrial Environments for Human-Robot Interaction

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

Abstract

In this paper, a scene perception and recognition module aimed at use in typical industrial scenarios is presented. The major contribution of this work lies in a 3D object detection, recognition and pose estimation module, which can be trained using CAD models and works for noisy data, partial views and in cluttered scenes. This algorithm was qualitatively and quantitatively compared with other state-of-art algorithms. Scene perception and recognition is an important aspect in the design of intelligent robotic systems which can adapt to unstructured and rapidly changing environments. This work has been used and evaluated in several experiments and demonstration scenarios for autonomous process plan execution, human-robot interaction and co-operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA 2007, pp. 357–360. ACM, New York (2007)

    Google Scholar 

  2. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the harris operator for interest point detection on 3d meshes. Vis. Comput. 27, 963–976 (2011)

    Article  Google Scholar 

  3. Zhong, Y.: Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: Computer Vision Workshops (ICCV Workshops), pp. 689–696 (2009)

    Google Scholar 

  4. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)

    Google Scholar 

  5. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: Robotics and Automation (ICRA), pp. 3212–3217. IEEE (2009)

    Google Scholar 

  6. Hu, G.: 3-d object matching in the hough space. In: IEEE International Conference on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century, vol. 3, pp. 2718–2723 (1995)

    Google Scholar 

  7. Schnabel, R., Wessel, R., Wahl, R., Klein, R.: Shape recognition in 3d point-clouds. In: Skala, V. (ed.) The 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2008. UNION Agency-Science Press (2008)

    Google Scholar 

  8. Schnabel, R., Wahl, R., Klein, R.: Efficient ransac for point-cloud shape detection. Computer Graphics Forum 26, 214–226 (2007)

    Article  Google Scholar 

  9. Papazov, C., Haddadin, S., Parusel, S., Krieger, K., Burschka, D.: Rigid 3D geometry matching for grasping of known objects in cluttered scenes. International Journal of Robotic Research 31, 538–553 (2012)

    Article  Google Scholar 

  10. Papazov, C., Burschka, D.: An efficient ransac for 3d object recognition in noisy and occluded scenes. In: Proceedings of the 10th Asian Conference on Computer Vision - Volume Part I, pp. 135–148 (2011)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: 14.3.12 Hierarchical clustering The Elements of Statistical Learning, 2nd edn. Springer, New York (2009) ISBN 0-387-84857-6

    Book  Google Scholar 

  12. Gonzalez, R.C., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, New Jersey (2002)

    Google Scholar 

  13. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  14. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)

    Article  Google Scholar 

  15. Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimization with label costs. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 2173–2180 (2010)

    Google Scholar 

  16. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vision 96, 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leonardis, A., Gupta, A., Bajcsy, R.: Segmentation of range images as the search for geometric parametric models. Int. J. Comput. Vision 14, 253–277 (1995)

    Article  Google Scholar 

  18. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary mrfs via extended roof duality. In: Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  20. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38, 91–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., Vincze, M.: Segmentation of unknown objects in indoor environments. In: Intelligent Robots and Systems (IROS 2012), pp. 4791–4796 (2012)

    Google Scholar 

  22. Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem proving to problem solving. Technical Report 43R, AI Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, SRI Project 8259 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Somani, N., Dean-León, E., Cai, C., Knoll, A. (2013). Scene Perception and Recognition in Industrial Environments for Human-Robot Interaction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics