Skip to main content

A Machine Learning Approach to Horizon Line Detection Using Local Features

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

Abstract

Planetary rover localization is a challenging problem since no conventional methods such as GPS, structural landmarks etc. are available. Horizon line is a promising visual cue which can be exploited for estimating the rover’s position and orientation during planetary missions. By matching the horizon line detected in 2D images captured by the rover with virtually generated horizon lines from 3D terrain models (e.g., Digital Elevation Maps(DEMs)), the localization problem can be solved in principle. In this paper, we propose a machine learning approach for horizon line detection using edge images and local features (i.e., SIFT). Given an image, first we apply Canny edge detection using various parameters and keep only those edges which survive over a wide range of thresholds. We refer to these edges as Maximally Stable Extremal Edges (MSEEs). Using ground truth information, we then train an Support Vector Machine (SVM) classifier to classify MSEE pixels into two categories: horizon and non-horizon. Each MSSE pixel is described using SIFT features which becomes input to the SVM classifier. Given a novel image, we use the same procedure to extract MSSEs; then, we classify each MSEE pixel as horizon or non-horizon using the SVM classifier. MSEE pixels classified as horizon are then provided to a Dynamic Programming shortest path finding algorithm which returns a consistent horizon line. In general, Dynamic Programming returns different solutions (i.e., due to gaps) when searching for the optimum horizon line in a left-to-right or right-to-left fashion. We use the actual output of the SVM classifier to resolve ambiguities in places where the left-to-right and right-to-left solutions are different. The final solution, is typically a combination of edge segments from the left-to-right or right-to-left solutions. Moreover, we use the SVM classifier to fill in small gaps in the horizon line; this is in contrast to the traditional dynamic programming approach which relies on mere interpolation. We report promising experimental results using a set of real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cozman, F., Guestrin, C.E.: Automatic Mountain Detection and Pose Estimation for Teleoperation of Lunar Rovers. In: ICRA (1997)

    Google Scholar 

  2. Fefilatyev, S., Smarodzinava, V., Hall, L.O., Goldgof, D.B.: Horizon Detection Using Machine Learning Techniques. In: ICMLA, pp. 17–21 (2006)

    Google Scholar 

  3. http://www.vlfeat.org/index.html

  4. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 68(2), 91–110 (2004)

    Article  Google Scholar 

  5. http://www.cs.waikato.ac.nz/ml/weka/

  6. Obdržálek, Š., Matas, J(G.): Object recognition using local affine frames on maximally stable extremal regions. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 83–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kim, B.-J., Shin, J.-J., Nam, H.-J., Kim, J.-S.: Skyline Extraction using a Multistage Edge Filtering. World Academy of Science, Engineering and Technology 55 (2011)

    Google Scholar 

  8. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale visual geo-localization of images in mountainous terrain. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 517–530. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Lie, W.-N., Lin, T.C.-I., Lin, T.-C., Hung, K.-S.: A robust dynamic programming algorithm to extract skyline in images for navigation. Pattern Recognition Letters 26, 221–230 (2005)

    Article  Google Scholar 

  10. McGee, T.G., Sengupta, R., Hedrick, K.: Obstacle Detection for Small Autonomous Aircraft Using Sky Segmentation. In: International Conference on Robotics and Automation, ICRA 2005 (2005)

    Google Scholar 

  11. Ettinger, S.M., Nechyba, M.C., Ifju, P.G., Waszak, M.: Vision-Guided Flight Stability and Control for Micro Air Vehicles. In: IEEE Int. Conf. on Intelligent Robots and Systems (2002)

    Google Scholar 

  12. de Croon, G.C.H.E., Remes, B.D.W., De Wagter, C., Ruijsink, R.: Sky Segmentation Approach to Obstacle Avoidance. In: IEEE Aerospace Conference (2011)

    Google Scholar 

  13. Todorovic, S., Nechyba, M.C., Ifju, P.G.: Sky/Ground Modeling for Autonomous MAV Flight. In: International Conference on Robotics and Automation, ICRA 2003 (2003)

    Google Scholar 

  14. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions In. In: Proc. of British Machine Vision Conference, pp. 384–396 (2002)

    Google Scholar 

  15. Chen, J., Shan, S., He, C., Zhao, G., Pietikinen, M., Chen, X., Gao, W.: WLD: A Robust Local Image Descripto. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2009)

    Google Scholar 

  16. Ojala, T., Pietikinen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  17. Tax, D.M.J., Duin, R.P.W.: Support Vector Data Description. Machine Learning 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmad, T., Bebis, G., Regentova, E.E., Nefian, A. (2013). A Machine Learning Approach to Horizon Line Detection Using Local Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics