Advertisement

Voronoi-Based Medial Axis Approximation from Samples: Issues and Solutions

  • Farid Karimipour
  • Mehran Ghandehari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8110)

Abstract

Continuous curves are approximated by sample points, which carry the shape information of the curve. If sampling is sufficiently dense, the sample points can be used to extract the structural properties of the curve (e.g., crust, medial axis, etc.). This article focuses on approximation of medial axis from sample points. Especially, we review the methods that approximate the medial axis using Voronoi diagram. Such methods are extremely sensitive to noise and boundary perturbations. Thus, a pre- or post-processing step is needed to filter irrelevant branches of the medial axis, which are introduced in this article. We, then, propose a new medial axis approximation algorithm that automatically avoids irrelevant branches through labeling sample points. The results indicate that our method is stable, easy to implement, robust and able to handle sharp corners, even in the presence of significant noise and perturbations.

Keywords

Sample points Medial axis approximation Pruning Voronoi diagram Delaunay triangulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, H., et al.: A Transformation for Extracting New Descriptors of Shape. Models for the Perception of Speech and Visual Form 19, 362–380 (1967)Google Scholar
  2. 2.
    Blum, H., Nagel, R.N.: Shape Description Using Weighted Symmetric Axis Features. Pattern Recognition 10, 167–180 (1978)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bookstein, F.L.: The Line-Skeleton. Computer Graphics and Image Processing 11, 123–137 (1979)CrossRefGoogle Scholar
  4. 4.
    Brandt, J.W., Jain, A.K., Ralph Algazi, V.: Medial Axis Representation and Encoding of Scanned Documents. Journal of Visual Communication and Image Representation 2, 151–165 (1991)CrossRefGoogle Scholar
  5. 5.
    Gross, L.M.: Transfinite Surface Interpolation over Voronoi Diagrams. PhD Thesis, Arizona State University (1995)Google Scholar
  6. 6.
    Chou, J.J.: Numerical Control Milling Machine Tool path Generation for Regions Bounded by Free Form Curves and Surfaces. PhD Thesis, University of Utah Salt Lake City, UT, USA (1989)Google Scholar
  7. 7.
    O’rourke, J.: Computational Geometry in C. Cambridge University (1998)Google Scholar
  8. 8.
    Gursoy, H.N., Patrikalakis, N.M.: Automatic Coarse and Fine Surface Mesh Generation Scheme Based on Medial Axis Transform: Part I Algorithms. Engineering with Computers (New York) 8, 121–137 (1992)CrossRefGoogle Scholar
  9. 9.
    Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An Algorithm for the Medial Axis Transform of 3d Polyhedral Solids. IEEE Transactions on Visualization and Computer Graphics 2, 44–61 (1996)CrossRefGoogle Scholar
  10. 10.
    Hisada, M., Belyaev, A.G., Kunii, T.L.: A Skeleton-Based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces. Computer Graphics Forum 21, 689–700 (2002)CrossRefGoogle Scholar
  11. 11.
    Hoffmann, C.M.: Geometric and Solid Modeling: An Introduction. Morgan Kaufmann (1989)Google Scholar
  12. 12.
    Gold, C.: Crust and Anti-Crust: A One-Step Boundary and Skeleton Extraction Algorithm. In: Proceedings of the Fifteenth Annual Symposium on Computational Geometry, pp. 189–196 (1999)Google Scholar
  13. 13.
    Gold, C., Snoeyink, J.: A One-Step Crust and Skeleton Extraction Algorithm. Algorithmica 30, 144–163 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gold, C., Dakowicz, M.: The Crust and Skeleton–Applications in GIS. In: Proceedings of 2nd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 33–42 (2005)Google Scholar
  15. 15.
    Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies-a Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 869–885 (1992)Google Scholar
  16. 16.
    Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28, 343–359 (1995)CrossRefGoogle Scholar
  17. 17.
    Borgefors, G.: Centres of Maximal Discs in the 5-7-11 Distance Transform. In: Proceedings of the Scandinavian Conference on Image Analysis, vol. 1, pp. 105–105 (1993)Google Scholar
  18. 18.
    Arcelli, C., Frucci, M.: Reversible Skeletonization by (5, 7, 11)-Erosion. In: Proceedings of the International Workshop on Visual Form: Analysis and Recognition, pp. 21–28 (1992)Google Scholar
  19. 19.
    Chou, J.J.: Voronoi Diagrams for Planar Shapes. IEEE Computer Graphics and Applications 15, 52–59 (1995)CrossRefGoogle Scholar
  20. 20.
    Ramanathan, M., Gurumoorthy, B.: Constructing Medial Axis Transform of Planar Domains with Curved Boundaries. Computer-Aided Design 35, 619–632 (2003)CrossRefGoogle Scholar
  21. 21.
    Amenta, N., Bern, M.W., Eppstein, D.: The Crust and the Beta-Skeleton: Combinatorial Curve Reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)CrossRefGoogle Scholar
  22. 22.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)Google Scholar
  23. 23.
    Russ, J.C.: The Image Processing Handbook. CRC Press (2002)Google Scholar
  24. 24.
    Wenger, R.: Shape and Medial Axis Approximation from Samples. PhD Thesis. The Ohio State University (2003)Google Scholar
  25. 25.
    Cheng, S.W., Funke, S., Golin, M., Kumar, P., Poon, S.H., Ramos, E.: Curve Reconstruction from Noisy Samples. Computational Geometry 31, 63–100 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dey, T.K., Wenger, R.: Fast Reconstruction of Curves with Sharp Corners. International Journal of Computational Geometry and Applications 12, 353–400 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ledoux, H.: Modelling Three-Dimensional Fields in Geo-Science with the Voronoi Diagram and Its Dual. Ph.D Thesis. School of Computing, University of Glamorgan, Pontypridd, Wales, UK (2006)Google Scholar
  28. 28.
    Gavrilova, M., Ratschek, H., Rokne, J.G.: Exact Computation of Delaunay and Power Triangulations. Reliable Computing 6, 39–60 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Karimipour, F., Delavar, M.R., Frank, A.U.: A Simplex-Based Approach to Implement Dimension Independent Spatial Analyses. Journal of Computer and Geosciences 36, 1123–1134 (2010)CrossRefGoogle Scholar
  30. 30.
    Giesen, J., Miklos, B., Pauly, M.: Medial Axis Approximation of Planar Shapes from Union of Balls: A Simpler and More Robust Algorithm. In: Canad. Conf. Comput. Geom., pp. 105–108 (2007)Google Scholar
  31. 31.
    Edelsbrunner, H.: The Union of Balls and Its Dual Shape. Discrete & Computational Geometry 13, 415–440 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Amenta, N., Choi, S., Kolluri, R.K.: The Power Crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–266 (2001)Google Scholar
  33. 33.
    Amenta, N., Kolluri, R.K.: The Medial Axis of a Union of Balls. Computational Geometry 20, 25–37 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Attali, D., Montanvert, A.: Computing and Simplifying 2d and 3d Continuous Skeletons. Computer Vision and Image Understanding 67, 261–273 (1997)CrossRefGoogle Scholar
  35. 35.
    Miklos, B., Giesen, J., Pauly, M.: Medial Axis Approximation from Inner Voronoi Balls: A Demo of the Mesecina Tool. In: Proceedings of the Twenty-third Annual Symposium on Computational Geometry, pp. 123–124 (2007)Google Scholar
  36. 36.
    Tam, R.C.: Voronoi Ball Models for Computational Shape Applications. PhD thesis, The University of British Columbia (2004)Google Scholar
  37. 37.
    Karimipour, F., Delavar, M.R., Frank, A.U.: A Mathematical Tool to Extend 2D Spatial Operations to Higher Dimensions. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 153–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Alliez, P., Devillers, O., Snoeyink, J.: Removing Degeneracies by Perturbing the Problem or Perturbing the World. Reliable Computing 6, 61–79 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mokhtarian, F., Mackworth, A.: A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves (Pdf). IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992)Google Scholar
  40. 40.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-Jacobi Skeletons. International Journal of Computer Vision 48, 215–231 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Siddiqi, K., Kimia, B.B., Shu, C.W.: Geometric Shock-Capturing Eno Schemes for Subpixel Interpolation, Computation and Curve Evolution. Graphical Models and Image Processing 59, 278–301 (1997)CrossRefGoogle Scholar
  42. 42.
    Attali, D., Montanvert, A.: Modeling Noise for a Better Simplification of Skeletons. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 13–16 (1996)Google Scholar
  43. 43.
    Attali, D., di Baja, G., Thiel, E.: Pruning Discrete and Semicontinuous Skeletons. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 488–493. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  44. 44.
    Malandain, G., Fernández-Vidal, S.: Euclidean Skeletons. Image and Vision Computing 16, 317–327 (1998)CrossRefGoogle Scholar
  45. 45.
    Chazal, F., Lieutier, A.: The “Lambda Medial Axis”. Graphical Models 67, 304–331 (2005)CrossRefzbMATHGoogle Scholar
  46. 46.
    Attali, D., Montanvert, A.: Semicontinuous Skeletons of 2d and 3d Shapes. In: Aspects of Visual Form Processing, pp. 32–41 (1994)Google Scholar
  47. 47.
    Bai, X., Latecki, L.J.: Discrete skeleton evolution. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 362–374. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  48. 48.
    Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The Scale Axis Transform. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 106–115 (2009)Google Scholar
  49. 49.
    Mesecina: computational geometry you can see, http://www.balintmiklos.com/mesecina
  50. 50.
    Karimipour, F., Ghandehari, M.: A Stable Voronoi-Based Algorithm for Medial Axis Extraction through Labeling Sample Points. In: Proceedings of the 9th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2012), New Jersey, USA, pp. 109–114 (2012)Google Scholar
  51. 51.
    Ghandehari, M., Karimipour, F.: Voronoi-Based Curve Reconstruction: Issues and Solutions. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 194–207. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  52. 52.
    Karimipour, F., Ghandehari, M., Ledoux, H.: Medial Axis Approximation of River Network for Catchment Area Delineation. In: Proceedings of the International Workshop on Geoinformation Advances. Lecture Notes in Geoinformation and Cartography (LNG&C), p. 223. Springer, Johor (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Farid Karimipour
    • 1
  • Mehran Ghandehari
    • 1
  1. 1.Department of Surveying and Geomatics Engineering, College of EngineeringUniversity of TehranIran

Personalised recommendations