Advertisement

Localizing the Delaunay Triangulation and Its Parallel Implementation

  • Renjie Chen
  • Craig Gotsman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8110)

Abstract

We show how to localize the Delaunay triangulation of a given planar point set, namely, bound the set of points which are possible Delaunay neighbors of a given point. We then exploit this observation in an algorithm for constructing the Delaunay triangulation (and its dual Voronoi diagram) by computing the Delaunay neighbors (and Voronoi cell) of each point independently. While this does not lead to the fastest serial algorithm possible for Delaunay triangulation, it does lead to an efficient parallelization strategy which achieves almost perfect speedups on multicore machines.

Keywords

Delaunay triangulation Voronoi diagram parallel computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dwyer, R.: A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 2, 137–151 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: SCG 1986, pp. 313–322. ACM, NY (1986)Google Scholar
  3. 3.
    Green, P.J., Sibson, R.: Computing Dirichlet tessellations in the plane. The Computer Journal 21(2), 168–173 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Guibas, L., Knuth, D., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barber, C.B.: Computational geometry with imprecise data and arithmetic. PhD thesis, Princeton (1993)Google Scholar
  6. 6.
    Su, P., Scot Drysdale, R.L.: A comparison of sequential Delaunay triangulation algorithms. Comput. Geom. Theory Appl. 7, 361–385 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for closest point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Maus, A.: Delaunay triangulation and the convex hull of n points in expected linear time. BIT Numerical Mathematics 24, 151–163 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cignoni, P., Montani, C., Perego, R., Scopigno, R.: Parallel 3D Delaunay triangulation. Computer Graphics Forum 12(3), 129–142 (1993)CrossRefGoogle Scholar
  10. 10.
    Blelloch, G., Miller, G.L., Talmor, D.: Developing a practical projection-based parallel Delaunay algorithm. In: SoCG 1996, pp. 186–195. ACM (May 1996)Google Scholar
  11. 11.
    Lee, S., Park, C.I., Park, C.M.: An efficient parallel algorithm for Delaunay triangulation on distributed memory parallel computers. In: PDPTA 1996, pp. 169–177. CSREA Press (1996)Google Scholar
  12. 12.
    Amato, N.M., Goodrich, M.T., Ramos, E.A.: Parallel algorithms for higher-dimensional convex hulls. In: FOCS, pp. 683–694. IEEE Computer Society (1994)Google Scholar
  13. 13.
    Blelloch, G.E., Hardwick, J.C., Miller, G.L., Talmor, D.: Design and implementation of a practical parallel Delaunay algorithm. Algorithmica 24(3-4), 243–269 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dadoun, N., Kirkpatrick, D.G.: Parallel construction of subdivision hierarchies. J. Comput. Syst. Sci. 39(2), 153–165 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Meyerhenke, H.: Constructing higher-order Voronoi diagrams in parallel. In: EuroCG, Technische Universiteit Eindhoven, pp. 123–126 (2005)Google Scholar
  16. 16.
    Reif, J.H., Sen, S.: Optimal parallel randomized algorithms for three-dimensional convex hulls and related problems. SIAM J. Comput. 21(3), 466–485 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schwarzkopf, O.: Parallel computation of discrete Voronoi diagrams. In: Cori, R., Monien, B. (eds.) STACS 1989. LNCS, vol. 349, pp. 193–204. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  18. 18.
    Spielman, D.A., Teng, S.H., Üngör, A.: Parallel Delaunay refinement: Algorithms and analyses. Int. J. Comput. Geometry Appl. 17(1), 1–30 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Trefftz, C., Szakas, J.: Parallel algorithms to find the Voronoi diagram and the order-k Voronoi diagram. In: IPDPS 2003, p. 270a. IEEE Computer Society, DC, USA (2003)Google Scholar
  20. 20.
    Vemuri, B.C., Varadarajan, R., Mayya, N.: An efficient expected time parallel algorithm for Voronoi construction. In: SPAA, pp. 392–401 (1992)Google Scholar
  21. 21.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and applications of Voronoi diagrams. Wiley (2000)Google Scholar
  22. 22.
    Rong, G., Tan, T.S., Cao, T.T., Stephanus: Computing two-dimensional Delaunay triangulation using graphics hardware. In: I3D 2008, pp. 89–97. ACM, NY (2008)Google Scholar
  23. 23.
    Qi, M., Cao, T.T., Tan, T.S.: Computing 2D constrained Delaunay triangulation using the gpu. In: I3D 2012, pp. 39–46. ACM, NY (2012)Google Scholar
  24. 24.
    Maus, A., Drange, J.M.: All closest neighbors are proper Delaunay edges generalized, and its application to parallel algorithms. In: Proceedings of Norwegian Informatikkonferanse (2010)Google Scholar
  25. 25.
    Reem, D.: On the possibility of simple parallel computing of Voronoi diagrams and Delaunay graphs (preprint)Google Scholar
  26. 26.
    Reem, D.: An algorithm for computing Voronoi diagrams of general generators in general normed spaces. In: ISVD 2009, pp. 144–152. IEEE Computer Society, DC, USA (2009)Google Scholar
  27. 27.
    Shewchuk, J.R.: Star splaying: an algorithm for repairing Delaunay triangulations and convex hulls. In: SCG 2005, pp. 237–246. ACM, NY (2005)Google Scholar
  28. 28.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer (2008)Google Scholar
  29. 29.
    Caroli, M., Teillaud, M.: On the computation of 3D periodic triangulations. In: SCG 2008, pp. 222–223. ACM, NY (2008)Google Scholar
  30. 30.
    McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple polygon. Inf. Process. Lett. 9(5), 201–206 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Har-Peled, S.: On the expected complexity of random convex hulls. ArXiv e-prints (November 2011)Google Scholar
  32. 32.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    : Cgal, Computational Geometry Algorithms LibraryGoogle Scholar
  34. 34.
    Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  35. 35.
    OPENMP ARB: OpenMP API Specifications for Parallel Programming (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Renjie Chen
    • 1
  • Craig Gotsman
    • 1
  1. 1.Technion - Israel Inistitute of TechnologyHaifaIsrael

Personalised recommendations